Head First---策略模式

本文深入探讨了策略模式的定义、设计原则、优点及缺点,旨在清晰阐述如何通过策略模式实现算法或行为的封装与独立变化,减少代码的不经意后果,提升系统的弹性与维护性。

策略模式(Strategy Pattern):定义了算法(我的理解是行为)族,分别封装起来(针对某一类行为定义一接口,然后定义类实现行为的各种表现形式),让它们之间可以相互替换,此模式让算法的变化独立于使用算法的客户。

设计原则
(1)找出应用中可能需要变化之处,把它们独立处理,不要和那些不需要变化的代码混在一起。
     结果:代码变化引起的不经意后果变少,系统变得更有弹性
(2)针对接口编程,而不是针对实现编程: 这个还不太理解,我的初步理解是针对行为编程,将鸭子的行为放在分开的类中,此类专门提供某行为接口的实现,这样,      鸭子类就不需要知道行为的现实细节。
(3)多用组合,少用继承。

策略模式的优点:
(1)策略模式提供了管理相关的算法族的办法。策略类的等级结构定义了一个算法或行为族。恰当使用继承可以把公共的代码移到父类里面,从而避免代码重复。

(2)使用策略模式可以避免使用多重条件(if-else)语句。多重条件语句不易维护,它把采取哪一种算法或采取哪一种行为的逻辑与算法或行为的逻辑混合在一起,统统列在一个多重条件语句里面,比使用继承的办法还要原始和落后。


策略模式的缺点:
(1)客户端必须知道所有的策略类,并自行决定使用哪一个策略类。这就意味着客户端必须理解这些算法的区别,以便适时选择恰当的算法类。换言之,策略模式只适用于客户端知道算法或行为的情况。

(2)由于策略模式把每个具体的策略实现都单独封装成为类,如果备选的策略很多的话,那么对象的数目就会很可观。


内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值