Non-bouncy numbers
Working from left-to-right if no digit is exceeded by the digit to its left it is called an increasing number; for example, 134468.
Similarly if no digit is exceeded by the digit to its right it is called a decreasing number; for example, 66420.
We shall call a positive integer that is neither increasing nor decreasing a “bouncy” number; for example, 155349.
As n increases, the proportion of bouncy numbers below n increases such that there are only 12951 numbers below one-million that are not bouncy and only 277032 non-bouncy numbers below 1010.
How many numbers below a googol (10100) are not bouncy?
非弹跳数
从左往右,如果每一位数字都大于等于其左边的数字,这样的数被称为上升数,比如134468。
同样地,如果每一位数字都大于等于其右边的数字,这样的数被称为下降数,比如66420。
如果一个正整数既不是上升数也不是下降数,我们就称之为“弹跳”数,比如155349。
随着n的增长,小于n的弹跳数的比例也随之增长;在小于一百万的数中,只有12951个非弹跳数,而小于1010的数中只有277032个非弹跳数。
在小于一古戈尔(10100)的数中有多少个非弹跳数?
package projecteuler;
import java.math.BigInteger;
import junit.framework.TestCase;
public class Prj113 extends TestCase {
/**[a1,a2,a3,....an], 1<=a1<=a2<=a3<=...an<=9
* map to ---> [d + i -1]
* one to one map ===>rC(n+r-1)
*/
public void testNonBouncyNumbers() {
assertEquals(calNumOfNonbouncy(10, 6).toString(), "12951");
assertEquals(calNumOfNonbouncy(10, 10).toString(), "277032");
System.out.println(calNumOfNonbouncy(10, 100));
}
BigInteger calNumOfNonbouncy(int _n, int _r) {
BigInteger ret = BigInteger.ZERO;
int n = _n;
int r = _r;
BigInteger asc = calNr(n + r - 1, r);
// zero out
ret = ret.add(asc).subtract(BigInteger.ONE);
// [9,8,7,6,5,4,3,2,1]
n = n - 1;
//倒序补上0
for (int i = 1; i <= r; i++) {
BigInteger desc = calNr(n + i - 1, i).multiply(
new BigInteger(Integer.toString(r + 1 - i)));
ret = ret.add(desc);
}
ret = ret.subtract(new BigInteger(Integer.toString(_r * (_n - 1))));
return ret;
}
BigInteger calNr(int _n, int _r) {
BigInteger ret = BigInteger.ONE;
for (int i = 1; i <= _r; i++) {
ret = ret.multiply(new BigInteger(Integer.toString(_n + 1 - i)));
}
for (int i = 1; i <= _r; i++) {
ret = ret.divide(new BigInteger(Integer.toString(i)));
}
return ret;
}
}