[LeetCode]561. Array Partition I (数组分区 1)

本文解析了LeetCode上的561. Array Partition I问题,介绍了如何通过排序并选取每对最小值的方法来实现题目要求的最大化配对和,并提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

561. Array Partition I

Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), …, (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.

题目大意:
给定一个长度为2n(偶数)的数组,分成n个小组,返回每组中较小值的和sum,使sum尽量大
Example 1:

Input: [1,4,3,2]
Output: 4
Explanation: n is 2, and the maximum sum of pairs is 4.

Note:

  • n is a positive integer, which is in the range of [1, 10000].
  • All the integers in the array will be in the range of [-10000, 10000].

思路:

  • 先排序,将相邻两个数分为一组,每组较小数都在左边,求和即可

算法分析:
查看英文版请点击上方

  • 假设对于每一对i,bi >= ai。
  • 定义Sm = min(a1,b1)+ min(a2,b2)+ … + min(an,bn)。最大的Sm是这个问题的答案。由于bi >= ai,Sm = a1 + a2 + … + an。
  • 定义Sa = a1 + b1 + a2 + b2 + … + an + bn。对于给定的输入,Sa是常数。
  • 定义di = | ai - bi |。由于bi >= ai,di = bi-ai, bi = ai+di。
  • 定义Sd = d1 + d2 + … + dn。
  • 所以Sa = a1 + (a1 + d1) + a2 + (a2 + d2) + … + an + (an + di) = 2Sm + Sd , 所以Sm =(Sa-Sd)/ 2。为得到最大Sm,给定Sa为常数,需要使Sd尽可能小。
  • 所以这个问题就是在数组中找到使di(ai和bi之间的距离)的和尽可能小的对。显然,相邻元素的这些距离之和是最小的。

代码如下:

// https://leetcode.com/problems/array-partition-i/#/description原题
//https://discuss.leetcode.com/topic/87206/java-solution-sorting-and-rough-proof-of-algorithm
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
class Solution {
public:
    int arrayPairSum(vector<int>& nums) {
        int res = 0;
        sort(nums.begin(), nums.end());
        for(int i=0; i<nums.size(); i+=2){
            res += nums[i];
        }
        return res;
    }
};
int main()
{
    Solution a;
    int num[4] = {1, 4, 3, 2};
    int numLength = sizeof(num) / sizeof(num[0]);
    vector<int> nums(num, num+numLength);
    cout << a.arrayPairSum(nums) << endl;
    return 0;
}
Yousef has an array a of size n . He wants to partition the array into one or more contiguous segments such that each element ai belongs to exactly one segment. A partition is called cool if, for every segment bj , all elements in bj also appear in bj+1 (if it exists). That is, every element in a segment must also be present in the segment following it. For example, if a=[1,2,2,3,1,5] , a cool partition Yousef can make is b1=[1,2] , b2=[2,3,1,5] . This is a cool partition because every element in b1 (which are 1 and 2 ) also appears in b2 . In contrast, b1=[1,2,2] , b2=[3,1,5] is not a cool partition, since 2 appears in b1 but not in b2 . Note that after partitioning the array, you do not change the order of the segments. Also, note that if an element appears several times in some segment bj , it only needs to appear at least once in bj+1 . Your task is to help Yousef by finding the maximum number of segments that make a cool partition. Input The first line of the input contains integer t (1≤t≤104 ) — the number of test cases. The first line of each test case contains an integer n (1≤n≤2⋅105 ) — the size of the array. The second line of each test case contains n integers a1,a2,…,an (1≤ai≤n ) — the elements of the array. It is guaranteed that the sum of n over all test cases doesn't exceed 2⋅105 . Output For each test case, print one integer — the maximum number of segments that make a cool partition. Example InputCopy 8 6 1 2 2 3 1 5 8 1 2 1 3 2 1 3 2 5 5 4 3 2 1 10 5 8 7 5 8 5 7 8 10 9 3 1 2 2 9 3 3 1 4 3 2 4 1 2 6 4 5 4 5 6 4 8 1 2 1 2 1 2 1 2 OutputCopy 2 3 1 3 1 3 3 4 Note The first test case is explained in the statement. We can partition it into b1=[1,2] , b2=[2,3,1,5] . It can be shown there is no other partition with more segments. In the second test case, we can partition the array into b1=[1,2] , b2=[1,3,2] , b3=[1,3,2] . The maximum number of segments is 3 . In the third test case, the only partition we can make is b1=[5,4,3,2,1]
最新发布
06-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值