Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
分析:
求出BST的LCA。考虑两种情况,一:p和q分别在root的左右子树中,root即为LCA,二:p和q为上下级关系,此时,递归遍历到root等于p或者等于q时,root即为LCA。
代码:
class Solution(object):
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
# 如果某一个结点的左右子树中分别包含p,q,那么,该结点就是要找的结点
# 或者,等于号说明,如果p和q是上下级关系的话,那么此时root也为LCA
if p.val <= root.val <= q.val or q.val <= root.val <= p.val:
return root
else:
# 否则的话,应该去这个根节点的子树中去查找。
if p.val < root.val:
# 去左子树中寻找
return self.lowestCommonAncestor(root.left, p, q)
else:
# 去右子树中寻找
return self.lowestCommonAncestor(root.right, p, q)

本文介绍如何在二叉搜索树中找到两个指定节点的最低公共祖先。通过递归算法,我们探讨了两种情况:当目标节点位于当前节点两侧时,当前节点即为最低公共祖先;当目标节点位于同一侧时,则继续在相应子树中查找。
409

被折叠的 条评论
为什么被折叠?



