笔记:spark:wordcount

Spark WordCount实践解析
本文详细介绍了使用Apache Spark进行WordCount操作的过程,包括数据读取、分词、计数及结果输出等步骤,旨在帮助读者深入理解Spark在大数据处理中的基本应用。
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;

import java.util.Arrays;
import java.util.Iterator;

/**
 * @author Administrator
 * @date 2020/8/4 0004 21:35
 * @description
 * JavaSparkContext:wordcount
 */
public class JavaWordCountTest {

    public static void main(String[] args) {

        SparkConf conf = new SparkConf().setAppName("JavaWordCountTest");
        //创建初始JavaSparkContext
        JavaSparkContext jsc = new JavaSparkContext(conf);
        JavaRDD<String> lines = jsc.textFile(args[0]);
        //切分,压平
        //JavaRDD<String> word = lines.flatMap(w -> Arrays.stream(w.split(" ")).iterator());
        JavaRDD<String> word = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterator<String> call(String s) throws Exception {
                return Arrays.stream(s.split(" ")).iterator();
            }
        });
        //分组
        //JavaPairRDD<String, Integer> wordAndOne = word.mapToPair(w -> Tuple2.apply(w, 1));
        JavaPairRDD<String, Integer> wordAndOne = word.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) throws Exception {
                return Tuple2.apply(s, 1);
            }
        });
        //聚合
        //JavaPairRDD<String, Integer> reduced = wordAndOne.reduceByKey((i, j) -> i + j);
        JavaPairRDD<String, Integer> reduced = wordAndOne.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer integer, Integer integer2) throws Exception {
                return integer + integer2;
            }
        });
        //互换kv
        //JavaPairRDD<Integer, String> vk = reduced.mapToPair(tp -> tp.swap());
        JavaPairRDD<Integer, String> vk = reduced.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
            @Override
            public Tuple2<Integer, String> call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
                return stringIntegerTuple2.swap();
            }
        });
        //排序
        JavaPairRDD<Integer, String> sorted = vk.sortByKey(false);
        //再次互换kv得到结果
        // JavaPairRDD<String, Integer> res = sorted.mapToPair(tp -> tp.swap());
        JavaPairRDD<String, Integer> res = sorted.mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(Tuple2<Integer, String> integerStringTuple2) throws Exception {
                return integerStringTuple2.swap();
            }
        });
        //保存数据
        res.saveAsTextFile(args[1]);
        //关闭资源
        jsc.stop();
    }
}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

/**
 * @author Administrator
 * @date 2020/8/4 0004 16:05
 * @description
 * SparkContext:wordcount
 */
object WordCount {

  def main(args: Array[String]): Unit = {
    //创建SparkContext
    val conf: SparkConf = new SparkConf().setAppName("wordcount")
    //本地模式
    //.setMaster("local[2]")
    //SparkContext是用来创建原始的RDD
    val sc: SparkContext = new SparkContext(conf)

    //创建RDD(lazy)
    val lines = sc.textFile(args(0))

    //TransFormation,开始
    //切分压平
    val words: RDD[String] = lines.flatMap(_.split(" "))
    //组合
    val wordAndOne: RDD[(String, Int)] = words.map((_, 1))
    //分组聚合
    val reduced: RDD[(String, Int)] = wordAndOne.reduceByKey(_ + _)
    //排序
    val res: RDD[(String, Int)] = reduced.sortBy(_._2, false)
    //Action算子,会触发任务执行
    //保存数据
    res.saveAsTextFile(args(1))
    //关闭资源
    sc.stop()
  }
}

 

本项目通过STM32F103C8T6单片机最小系统,连接正点原子ESP8266 WiFi模块,将模块设置为Station模式,并与电脑连接到同一个WiFi网络。随后,STM32F103C8T6单片机将数据发送到电脑所在的IP地址。 功能概述 硬件连接: STM32F103C8T6单片机与正点原子ESP8266 WiFi模块通过串口连接。 ESP8266模块通过WiFi连接到电脑所在的WiFi网络。 软件配置: 在STM32F103C8T6上配置串口通信,用于与ESP8266模块进行数据交互。 通过AT指令将ESP8266模块设置为Station模式,并连接到指定的WiFi网络。 配置STM32F103C8T6单片机,使其能够通过ESP8266模块向电脑发送数据。 数据发送: STM32F103C8T6单片机通过串口向ESP8266模块发送数据。 ESP8266模块将接收到的数据通过WiFi发送到电脑所在的IP地址。 使用说明 硬件准备: 准备STM32F103C8T6单片机最小系统板。 准备正点原子ESP8266 WiFi模块。 将STM32F103C8T6单片机与ESP8266模块通过串口连接。 软件准备: 下载并安装STM32开发环境(如Keil、STM32CubeIDE等)。 下载本项目提供的源代码,并导入到开发环境中。 配置与编译: 根据实际需求配置WiFi网络名称和密码。 配置电脑的IP地址,确保与ESP8266模块在同一网络中。 编译并下载程序到STM32F103C8T6单片机。 运行与测试: 将STM32F103C8T6单片机与ESP8266模块上电。 在电脑上打开网络调试工具(如Wireshark、网络调试助手等),监听指定端口。 观察电脑是否接收到来自STM32F103C8T6单片机发送的数据。
在电子测量技术中,示波装置扮演着观测电信号形态的关键角色。然而,市售标准示波器往往定价较高,使得资源有限的入门者或教学环境难以配备。为此,可采用基于51系列微控制器的简易示波方案进行替代。该方案虽在性能上不及专业设备,但已能满足基础教学与常规电路检测的需求。下文将系统阐述该装置的主要构成模块及其运行机制。 本装置以51系列单片机作为中央处理核心,承担信号数据的运算与管理任务。该单片机属于8位微控制器家族,在嵌入式应用领域使用广泛。其控制程序可采用C语言进行开发,得益于C语言在嵌入式编程中的高效性与适应性,它成为实现该功能的合适选择。 波形显示部分采用了由ST7565控制器驱动的128×64点阵液晶模块。ST7565是一款图形液晶驱动芯片,支持多种像素规格的显示输出;此处所指的12864即表示屏幕具有128列、64行的像素阵列。该屏幕能以图形方式实时绘制信号曲线,从而提供直观的观测界面。 在模拟至数字信号转换环节,系统集成了TLC0820型模数转换芯片。该芯片具备8位分辨率及双输入通道,最高采样速率可达每秒10万次。这样的转换速度对于捕获快速变动的信号波形具有重要意义。 实现该示波装置需综合运用嵌入式软硬件技术。开发者需掌握51单片机的指令系统与编程方法,熟悉ST7565控制器的显示驱动配置,并能对TLC0820芯片进行正确的采样编程。此外,还需设计相应的模拟前端电路,包括信号调理、放大与滤波等部分,以确保输入ADC的信号质量满足测量要求。 通过C语言编写的控制程序,可完成系统各模块的初始化、数据采集、数值处理以及图形化显示等完整流程。开发过程中需借助调试工具对代码进行验证,保证程序执行的正确性与稳定性。 应当指出,受限于51系列单片机的运算能力与资源,该自制装置的功能相对基础,例如难以实现多通道同步测量、高级触发模式或高容量波形存储等复杂特性。尽管如此,对于绝大多数基础电子实验与教学演示而言,其性能已足够适用。 综上所述,结合51单片机、ST7565液晶控制器与TLC0820转换芯片,可以构建出一套成本低廉、结构清晰的简易示波系统。该装置不仅可作为电子爱好者、在校学生及教师的有益实践平台,帮助理解示波测量的基本原理,还能通过动手组装与调试过程,深化对电路分析与嵌入式系统设计的认识。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值