笔记:spark:wordcount

本文详细介绍了使用Apache Spark进行WordCount操作的过程,包括数据读取、分词、计数及结果输出等步骤,旨在帮助读者深入理解Spark在大数据处理中的基本应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;

import java.util.Arrays;
import java.util.Iterator;

/**
 * @author Administrator
 * @date 2020/8/4 0004 21:35
 * @description
 * JavaSparkContext:wordcount
 */
public class JavaWordCountTest {

    public static void main(String[] args) {

        SparkConf conf = new SparkConf().setAppName("JavaWordCountTest");
        //创建初始JavaSparkContext
        JavaSparkContext jsc = new JavaSparkContext(conf);
        JavaRDD<String> lines = jsc.textFile(args[0]);
        //切分,压平
        //JavaRDD<String> word = lines.flatMap(w -> Arrays.stream(w.split(" ")).iterator());
        JavaRDD<String> word = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterator<String> call(String s) throws Exception {
                return Arrays.stream(s.split(" ")).iterator();
            }
        });
        //分组
        //JavaPairRDD<String, Integer> wordAndOne = word.mapToPair(w -> Tuple2.apply(w, 1));
        JavaPairRDD<String, Integer> wordAndOne = word.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) throws Exception {
                return Tuple2.apply(s, 1);
            }
        });
        //聚合
        //JavaPairRDD<String, Integer> reduced = wordAndOne.reduceByKey((i, j) -> i + j);
        JavaPairRDD<String, Integer> reduced = wordAndOne.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer integer, Integer integer2) throws Exception {
                return integer + integer2;
            }
        });
        //互换kv
        //JavaPairRDD<Integer, String> vk = reduced.mapToPair(tp -> tp.swap());
        JavaPairRDD<Integer, String> vk = reduced.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
            @Override
            public Tuple2<Integer, String> call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
                return stringIntegerTuple2.swap();
            }
        });
        //排序
        JavaPairRDD<Integer, String> sorted = vk.sortByKey(false);
        //再次互换kv得到结果
        // JavaPairRDD<String, Integer> res = sorted.mapToPair(tp -> tp.swap());
        JavaPairRDD<String, Integer> res = sorted.mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(Tuple2<Integer, String> integerStringTuple2) throws Exception {
                return integerStringTuple2.swap();
            }
        });
        //保存数据
        res.saveAsTextFile(args[1]);
        //关闭资源
        jsc.stop();
    }
}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

/**
 * @author Administrator
 * @date 2020/8/4 0004 16:05
 * @description
 * SparkContext:wordcount
 */
object WordCount {

  def main(args: Array[String]): Unit = {
    //创建SparkContext
    val conf: SparkConf = new SparkConf().setAppName("wordcount")
    //本地模式
    //.setMaster("local[2]")
    //SparkContext是用来创建原始的RDD
    val sc: SparkContext = new SparkContext(conf)

    //创建RDD(lazy)
    val lines = sc.textFile(args(0))

    //TransFormation,开始
    //切分压平
    val words: RDD[String] = lines.flatMap(_.split(" "))
    //组合
    val wordAndOne: RDD[(String, Int)] = words.map((_, 1))
    //分组聚合
    val reduced: RDD[(String, Int)] = wordAndOne.reduceByKey(_ + _)
    //排序
    val res: RDD[(String, Int)] = reduced.sortBy(_._2, false)
    //Action算子,会触发任务执行
    //保存数据
    res.saveAsTextFile(args(1))
    //关闭资源
    sc.stop()
  }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值