标题:使用PyTorch实现MNIST手写数字识别
1.在这篇文章中,我们将使用PyTorch框架来实现一个简单的神经网络模型,用于识别MNIST手写数字数据集。我们将分为以下几个步骤进行:
- 导入所需的库和模块
- 定义数据预处理和加载器
- 创建神经网络模型
- 定义损失函数和优化器
- 训练模型并测试准确率
- 使用训练好的模型识别图像
- 将图像转换为NumPy数组并显示
首先,我们需要导入所需的库和模块:
import torch.nn
import numpy as np
from PIL import Image
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import torch.nn.functional as F
import matplotlib.pyplot as plt
接下来,我们定义数据预处理和加载器:
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))], )
train_dataset = datasets.MNIST(root='./dataset/mnist', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./dataset/mnist', train=False, transform=transform, download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
然后,我们创建神经网络模型:
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.linear1 = torch.nn.Linear(784, 512)
self.linear2 = torch.nn.Linear(512, 256)
self.linear3 = torch.nn.Linear(256, 128)
self.linear4 = torch.nn.Linear(128, 64)
self.linear5 = torch.nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = F.relu(self.linear4(x))
return self