codeforces 498 b Name That Tune

本文解析了CodeForces 498B猜歌游戏问题,采用概率动态规划方法求解在给定时间内猜中歌曲数量的期望值。通过构建dp数组,递推计算不同时间点猜中歌曲数的概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

codeforces 498 b Name That Tune

题目连接

点击打开链接

题意:猜歌游戏,给出每次每首歌猜中的概率pi,和每首歌最多猜的次数ti(一秒一次,等于ti次一定会成功),给出n首歌的pi和ti,给出游戏进行时间T,问T秒后猜中的歌的数目的期望。
限制:1 <= n <= 5000 , 1 <= T <= 5000 , 0 <= pi <= 100 1 <= ti <=T
思路:概率dp
dp[i][j] 表示 在第j秒猜中了i首歌的概率
dp[i][j] = ( dp[i-1][j-1]*pi + dp[i-1][j-2]*pi*(1-pi) + ... + dp[i-1][j-(ti-1)]*pi*(1-pi)^(ti-2) ) + dp[i-1][j-ti]*(1-pi)^(ti-1)
算出来之后全加起来就行了。


/*cf284div1b
  题意:猜歌游戏,给出每次每首歌猜中的概率pi,和每首歌最多猜的次数ti(一秒一次,等于ti次一定会成功),给出n首歌的pi和ti,给出游戏进行时间T,问T秒后猜中的歌的数目的期望。
  限制:1 <= n <= 5000 , 1 <= T <= 5000 , 0 <= pi <= 100 1 <= ti <=T
  思路:概率dp
  dp[i][j] 表示 在第j秒猜中了i首歌的概率
  dp[i][j] = ( dp[i-1][j-1]*pi + dp[i-1][j-2]*pi*(1-pi) + ... + dp[i-1][j-(ti-1)]*pi*(1-pi)^(ti-2) ) + dp[i-1][j-ti]*(1-pi)^(ti-1)
  算出来之后全加起来就行了。
 */
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int N=5005;
double dp[N][N];
double pi[N];
int ti[N];
int main(){
    int n,t;
    scanf("%d%d",&n,&t);
    for(int i=1;i<=n;++i){
        scanf("%lf%d",&pi[i],&ti[i]);
        pi[i]/=100;
    }
    double sum,bei,tmp;
    double ans=0;
    dp[0][0]=1;
    for(int i=1;i<=n;++i){
        bei=pow(1-pi[i],ti[i]-1);
        sum=0;
        for(int j=1;j<=t;++j){
            sum=sum*(1-pi[i])+dp[i-1][j-1]*pi[i];
            if(j>=ti[i]){
                sum-=dp[i-1][j-ti[i]]*pi[i]*bei;
                tmp=sum+dp[i-1][j-ti[i]]*bei;
            }
            else tmp=sum;
            dp[i][j]+=tmp;
            ans+=dp[i][j];
        }
    }
    printf("%.10f\n",ans);
    return 0;
}

### 关于 Codeforces 1853B 的题解与实现 尽管当前未提供关于 Codeforces 1853B 的具体引用内容,但可以根据常见的竞赛编程问题模式以及相关算法知识来推测可能的解决方案。 #### 题目概述 通常情况下,Codeforces B 类题目涉及基础数据结构或简单算法的应用。假设该题目要求处理某种数组操作或者字符串匹配,则可以采用如下方法解决: #### 解决方案分析 如果题目涉及到数组查询或修改操作,一种常见的方式是利用前缀和技巧优化时间复杂度[^3]。例如,对于区间求和问题,可以通过预计算前缀和数组快速得到任意区间的总和。 以下是基于上述假设的一个 Python 实现示例: ```python def solve_1853B(): import sys input = sys.stdin.read data = input().split() n, q = map(int, data[0].split()) # 数组长度和询问次数 array = list(map(int, data[1].split())) # 初始数组 prefix_sum = [0] * (n + 1) for i in range(1, n + 1): prefix_sum[i] = prefix_sum[i - 1] + array[i - 1] results = [] for _ in range(q): l, r = map(int, data[2:].pop(0).split()) current_sum = prefix_sum[r] - prefix_sum[l - 1] results.append(current_sum % (10**9 + 7)) return results print(*solve_1853B(), sep='\n') ``` 此代码片段展示了如何通过构建 `prefix_sum` 来高效响应多次区间求和请求,并对结果取模 \(10^9+7\) 输出[^4]。 #### 进一步扩展思考 当面对更复杂的约束条件时,动态规划或其他高级技术可能会被引入到解答之中。然而,在没有确切了解本题细节之前,以上仅作为通用策略分享给用户参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值