codeforces 498 e Stairs and Lines

本文介绍 CodeForces 平台上的题目 498E 的解决方案,该题要求计算在特定条件下图案内部添加横线或竖线的方法数量。通过使用动态规划和快速幂的方法,解决这一复杂的组合计数问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

codeforces 498 e Stairs and Lines

题目链接

点击打开链接

题意:给出7个阶梯的宽度wi,阶梯的高度是一定的,阶梯排在一起形成一个图案,现在在图案内部加入一些横线或竖线使得每个方格都不被线包围,问有多少种方法。

限制:0 <= wi <= 1e5
思路:dp,快速幂

文字好难表述。。。

/*cf284div1e
  题意:给出7个阶梯的宽度wi,阶梯的高度是一定的,阶梯排在一起形成一个图案,现在在图案内部加入一些横线或竖线使得每个方格都不被线包围,问有多少种方法。
  限制:0 <= wi <= 1e5
  思路:dp,快速幂
  文字好难表述。。。
 */
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define LL __int64
const int MOD=1000000007;
struct Matrix{
	LL a[1300][1300];
	int x,y;
};
int n;
Matrix mul(Matrix a,Matrix b){
	Matrix ret;
	for(int i=0;i<a.x;++i){
		for(int j=0;j<b.y;++j){
			int tmp=0;
			for(int k=0;k<a.y;++k){
				tmp=(tmp+a.a[i][k]*b.a[k][j]%MOD)%MOD;
			}
			ret.a[i][j]=tmp;
		}
	}
	ret.x=a.x;
	ret.y=b.y;
	return ret;
}
Matrix power(Matrix m,int n){
	Matrix ret;
	memset(ret.a,0,sizeof(ret.a));
	for(int i=0;i<m.x;++i){
		ret.a[i][i]=1;
	}
	ret.x=ret.y=m.x;
	for(int i=1;i<=n;i<<=1){
		if(i&n){
			ret=mul(ret,m);
		}
		m=mul(m,m);
	}
	return ret;
}

int a[7];
Matrix m0,p;
void print(Matrix p){
	for(int i=0;i<p.x;++i){
		for(int j=0;j<p.y;++j){
			cout<<p.a[i][j]<<' ';
		}
		cout<<endl;
	}
}
int main(){
	for(int i=0;i<7;++i)
		scanf("%d",&a[i]);
	m0.x=1;
	m0.y=2;
	m0.a[0][0]=0;
	m0.a[0][1]=1;

	//print(m0);
	for(int i=0;i<7;++i){
		p.x=p.y=(1<<(i+1));
		for(int j=0;j<p.y;++j){
			for(int k=0;k<p.x;++k){
				int cnt=0;
				for(int l=0;l<(1<<i);++l){
					int flag=1;
					if(i==0 && j==1 && k==1)
						flag=0;
					for(int i1=0;i1<=i;++i1){
						if((j & (1<<i1)) && (k & (1<<i1))){
							if(i1==0 && (l & (1<<i1))){
								flag=0;
								break;
							}
							if(i1==i && (l & (1<<(i1-1)))){
								flag=0;
								break;
							}
							if(i1>0 && i1<i && (l & (1<<i1)) && (l & (1<<(i1-1)))){
								flag=0;
								break;
							}
						}
					}
					cnt+=flag;
				}
				p.a[k][j]=cnt;
			}
		}
		//if(i==1){
		//	print(p);
		//}
		m0=mul(m0,power(p,a[i]));
		int add=(1<<(i+1));
		for(int j=0;j<m0.y;++j){
			m0.a[0][j+add]=m0.a[0][j];
			m0.a[0][j]=0;
		}
		m0.y*=2;
	}
	cout<<m0.a[0][m0.y-1]<<endl;
	return 0;
}

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值