62. Unique Paths
dp[i][j] :表示从(0, 0)出发,到(i, j) 有dp[i][j]条不同的路径
因为只能向下或向右移动,所以dp[i][j] = dp[i][j - 1] + dp[i - 1][j]
dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,dp[0][j]也同理
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
dp = [[0] * n for _ in range(m)]
for i in range(m):
dp[i][0] = 1
for j in range(n):
dp[0][j] = 1
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i][j - 1] + dp[i - 1][j]
return dp[m - 1][n - 1]
63. Unique Paths II
递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
row, col = len(obstacleGrid), len(obstacleGrid[0])
dp = [[0] * col for _ in range(row)]
for i in range(row):
if obstacleGrid[i][0] == 1: # 障碍之后的为0
break
dp[i][0] = 1
for j in range(col):
if obstacleGrid[0][j] == 1:
break
dp[0][j] = 1
for i in range(1, row):
for j in range(1, col):
if obstacleGrid[i][j] == 0:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[row - 1][col - 1]