235. Lowest Common Ancestor of a Binary Search Tree
求二叉树最近公共祖先的方法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if root == None: return None
if root == p or root == q: return root
left = self.lowestCommonAncestor(root.left, p, q)
right = self.lowestCommonAncestor(root.right, p, q)
if left and right:
return root
if left != None and right == None:
return left
if left == None and right != None:
return right
if left != None and right != None:
return None
利用二叉搜索树性质递归
节点的值介于p和q之间就是最近公共祖先
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def traversal(self, cur, p, q):
if cur == None:
return None
if cur.val > p.val and cur.val > q.val: # 左
return self.traversal(cur.left, p, q)
elif cur.val < p.val and cur.val < q.val: # 右
return self.traversal(cur.right, p, q)
else:
return cur # cur节点在区间,就是最近公共祖先
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
return self.traversal(root, p, q)
迭代
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
while root:
if root.val > p.val and root.val > q.val:
root = root.left
elif root.val < p.val and root.val < q.val:
root = root.right
else:
return root
701. Insert into a Binary Search Tree
递归
插入为叶子节点,不改变树的结构
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
# 插入为叶子节点,不改变树的结构
# 终止条件
if root == None:
newNode = TreeNode(val)
return newNode
if root.val > val:
root.left = self.insertIntoBST(root.left, val)
if root.val < val:
root.right = self.insertIntoBST(root.right, val)
return root
迭代
双指针,记录父节点
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if root == None:
return TreeNode(val)
parent = root
cur = root
while cur:
parent = cur # 记录父节点
if cur.val < val:
cur = cur.right
else:
cur = cur.left
# 此时cur位于停添加的位置
newNode = TreeNode(val)
if val < parent.val:
parent.left = newNode
else:
parent.right = newNode
return root
450. Delete Node in a BST
共有5种情况要考虑
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def deleteNode(self, root: Optional[TreeNode], key: int) -> Optional[TreeNode]:
# 终止条件
if root == None: # 第一种情况:没找到删除的节点,遍历到空节点直接返回了
return root
if root.val == key:
# 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
if root.left == None and root.right == None:
return None
# 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点
elif root.left == None and root.right != None:
return root.right
# 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
elif root.left != None and root.right == None:
return root.left
# 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置
else:
# 找到删除节点的右子树的最左面节点
cur = root.right
while cur.left != None:
cur = cur.left
cur.left = root.left
# 并返回删除节点右孩子为新的根节点。
return root.right
if root.val > key:
root.left = self.deleteNode(root.left, key)
if root.val < key:
root.right = self.deleteNode(root.right, key)
return root