CPU中的程序是怎么运行起来的

本文从硬件最小原子结构出发,介绍了CPU的基本组成部分及其工作原理。通过逻辑门的组合,逐步搭建起算术逻辑单元(ALU)和存储器,进而解释了机器码如何转化为CPU可执行的指令。此外,还探讨了从机器码到高级编程语言的发展历程。

点击“蓝字”关注我吧

总述

    最近一位朋友问我,开发的代码是怎么在芯片运行起来的,我就开始给他介绍代码的预编译、汇编、编译、链接然后到一般的文件属性,再到代码运行。但是大佬问了我一句,CPU到底是怎么执行到每一个逻辑的,就讲了哈CPU的架构。这是时候真的有些迷了,虽然有模电数电的底子,但是自己都说迷糊了,汇编怎么对应到机器码再到怎么执行每一个逻辑。

    所以我想了想,我自己也重新学习整理一下,写一篇文章分享给自己也分享给大家。虽然网上也有很多人讲这个过程,我也想用自己的视角去介绍一下。所以我就花了三天时间把《CODE》这本书啃完,然后又看了哈Crash Course Computer Science的视频,现在终于可以写篇文章了。

作者:良知犹存

转载授权以及围观:欢迎添加微信公众号:Conscience_Remains

1

CPU的硬件最小原子

    计算机从上世纪四十年代发展到现在有八十多年了,我们现在开发应用以及很少会涉及到底层的部分,硬件设计的电子专业在学校里面会学习模电数电这两门课,今天的第一部分就从这里说起。

一般我们不考虑物理的硬件底层的实现逻辑,但是为了后续的机器码的介绍,这里开始介绍CPU的基本组成部分。

    

    我们都知道现在的CPU是无数的晶体管组成,一块很小的CPU用显微镜观察可以看到上百万个元器件,那么最早电脑是啥样的呢?感谢Crash Course Computer Science的视频,下面有很好照片都是从她的视频中截取。以及感谢《CODE》,好多资料也是从此书得来。

最早的计算机,它有76万5千个组件,300多万个连接点和大约804公里长的用线,这个是真的大,而且它的核心控制还是用继电器实现控制逻辑的。

此外,它的性能相较于于现在的电脑来说简直微不足道。

    好了言归正传,我们直接介绍现在计算机中的CPU组成,之前用继电器、电子管进行控制计算,这些基本的元器件使得计算机体型庞大,后来半导体的出现,使得计算机的体积大大减小。没有使用半导体的时候,科学家使用继电器等进行控制电路的开关,控制电路电流的高和低,通过布尔代数组合形成我们现在经常说的逻辑门,继而实现数据的控制。

    


如上图所以它会出现如下情况

这其实就是一个简单开关的与门AND)电路,所有的变量输入是1的时候,输出才为1。相应的还有非门、或门、异或门等。

那么半导体是如何做到的呢?下面所示是三极管变化而成的与门(AND)电路,通过两个三极管连接(三极管的工作原理可以百度一哈),实现逻辑。

这是非门(NOT),输入1输出位0,输入位、为0输出为1.

这是或门(OR),只有A、B两个同时输入0的时候,输出才为0,其余都为1.

这是常用的逻辑门的图形表示以及真值表显示,最后一栏为真值表显示,其中A、B为输入,F为输出。

基于这些逻辑的组合我们可以变成最小的11位二进制逻辑的加法器,1bit的数据锁存器,再扩展为8位加法器,256M存储器。

2

CPU的模块组成过程

讲完了CPU组成的最小原子结构,接下来我们抽象出来了逻辑门进行

首先我们先介绍一下CPU的基本架构

一块完整可以执行程序CPU功能部件,里面有基本的ALU算数逻辑单元、控制单元、外部储存器(储存数据和程序)。

1970年发布的时候,它是第一个封装在单个芯片内完整的ALU。

ALU(算数逻辑单元)有两个单元:一个算数单元(加法器),负责计算机里的所有数字操作,例如加减法、增量运算等;一个逻辑单元,负责一些简单的数值测试,例如检测ALU输出是否为零的的电路


加法器:

用单个晶体管一个个去拼,把这个电路做出来,到那时会很复杂很难理解。所以我们更高层面的抽象-逻辑门去实现(AND、OR、NOT、XOR)。

下面这是一个1位的加法器:

二进制数的“和”可以由异或门得到,而“进位”可以由与门得到,所以可以把异或门和与门结合起来来完成两个二进制数 A和B的加法 

AB只能输入0或者1,也就是这个加法器能算0+0,1+0或者1+1。

脱离具体的形状,我们可以把以上的一个加法器,抽象为一个符号用来显示:

然后我们在进行扩展,把八个全加器连接,这样就变成了一个8bit的加法器。每个全加器的进位输出都是下一个全加器的进位输入: 

用一个抽象的框图进行表示,其中输入是A和B标识为从A0~A7及B0~B7。输出为和输出,标识为从 S0~S7: 

这样我们就构造了一个简单8位的加法器。


逻辑单元:同样AND、OR、NOT、XOR的执行,如下图一个简单的判断输出是否为0的电路

它用一堆OR门检查其中一位是否为1,哪怕只有一个输入的bit(位)为1,但都会被被或门到最后一个NOT(非)门进行取反,所以只有输入的数字是0,输出才能是为1。

告诉ALU执行加减法,下面图片里面的的V代表ALU部分

通过ALU的FLAGS进行判断,下面有三个标志一个是OVERFLOW(操作超出了总线宽度,设置为true(1))、ZERO(运算结果是否为零)、NEGATIVE(运算结果第一位为1,则设置为true(1),表示为负数)

这就是ALU中的一些单元,其实也是一大堆逻辑门巧妙连到一起。

    此外我们还需要存储器(memory),如果ALU计算出来数据丢掉那么数据也没什么用了,所以需要内存把数据保存起来,与ALU一起组成CPU

之前的介绍都是单向顺序执行的电路,那有什么可以返回的电路呢,通过输出来控制影响输入。

进行AND 、NOT、OR组合,变成一个1位锁存器

输入STE为1,输出为1

输入RESTE为1,输出为0

如果设置和置位都为0,电路会输出最后放置的状态,所以它就保存住1bit位的数据


其中这样一个1位的锁存器,放入的动作叫做写,拿出数据的动作叫做读

为了好显示,我们使用再高一级别的抽象层,用下面的框图表示:

随着芯片锁存器大小的扩展,正常连接需要的线是非常之多,所以引入了矩阵方式:

    为了将地址转化成为行和列 还要用多路复用器,这就是一个基本的SDRAM的组成结构。

    SRAM DRAM FLASH NVRAM,大家功能上相似,但是用不同的电路储存单个bit的数据,比如使用不同的逻辑门、电容器、、电荷捕获或者忆阻器。但是根本上,这些技术都是矩阵层层嵌套,来储存大量的信息。

3

CPU的代码语言执行以及编程语言的变化过程

    通过不同的逻辑门,我们逐渐搭建起了CPU的硬件部分,同时也抽象到了高层次的“微体系架构”,我们开始告诉CPU的模块进行操作,CPU里面都是101二进制数据,那怎么和CPU执行指令挂上钩呢?

    最早执行机器使用就是穿孔卡片,通过穿孔卡片的特殊位置有没有穿孔,决定机器执行的不同步骤。

在计算机早期,程序员编程必须用机器码写程序,一般会在会在纸上写一个“高层次”的描述——伪代码,例如:从内存中获取当月销售额,再计算出税费。

这里展示一个简单范例代码,一段机器码 00101110。

首先这个机器码分为前四位和后四位,前四位代表操作码,后四位代表地址。

首先在指令表可以查到 0010 对应着执行指令是LOAD_A 意思为从内存地址取出数据,放到寄存器A中。

CPU看到00101110是怎么执行的呢?

首先CPU有两个执行时候的寄存器:

  1. 指令地址寄存器,一个追踪器,负责追踪程序运行到哪里了;

  2. 指令寄存器,负责储存当前指令

其次,CPU执行指令有三个阶段: 取指令->解码->执行

取指令:负责把指令从RAM中复制到指令寄存器中

如下所示:CPU把0010 1110放到指令寄存器中

解码阶段:负责解析复制过来的指令对应到操作码是哪个执行,先解析0010


LOAD_A指令的工作:把RAM里面的值放入寄存器A中

再解析后四位1110,为地址14

接下来通过控制单元进行选择确认是否执行load指令

当然控制单元也是由逻辑门连接起来的,这个时候需要一个电路,检查操作码是不是LOAD_A对应的0010

执行阶段:当确认了执行的操作码,我们就开始执行

从地址1110(10进制14)读取出0000 0011的数据,  因为是LOAD_A指令,我们把该数据放进寄存器A,不操作其他寄存器

本次执行完成,然后我们就把“指令地址寄存器”+1,执行下一条命令,一直重复到代码结束。

    如果我们遇到了例如加减运算时候,就可以用到ALU了,数据寄存器把需要进行add的两个数据输入,然后在发送操作码给ALU,ALU开始执行最后输出到暂存的寄存器,关闭ALU,最后再把数据放入正确的寄存器

   除了执行动作,现代CPU还有时钟控制。很早的计算机都是用人工插拔来进行每一条指令的计算,但是对于现在的CPU执行频率来说,人工是做不到这样的速度,所以现在CPU里面有专门的时钟进行管理CPU的节奏,来告诉CPU要取指令-解码-执行。类似于练习乐器时候使用的节拍器一样。

    前面介绍程序运行时候我们是假设程序已经在内存里面了,但实际上程序储存的位置不在内存,并且需要在执行时候加载到内存里面。只要内存足够,不仅可以储存要运行的程序,还可以存程序需要的数据,以及运行程序时候产生的新数据。

    不过早期编程都是专家活,不管是全职还是技术控,都需要非常了解底层硬件,要懂操作码、寄存器等才能写程序,所以编程很麻烦,哪怕是工程师和科学家都无法完全发挥计算机的能力

    所以程序员开发出了一种新语言,更高层次,更可读性,每个操作码分配一个简单的名字——助记符。助记符后面紧跟数据,形成完整的指令。这样程序员就不用0和1去写代码,可以用load jump等助记符开始编程,这就是汇编。前面我们讲过这些助记符,应该还是比较容易理解的。但是CPU是只能识别二进制的,所以程序员又写了二进制程序来帮忙,它可以读懂文字指令,自动转化成二进制指令,这个程序就叫做——汇编器。

    汇编器读取用汇编语言写的程序,然后转成机器码。LOAD_A 14 是一个典型的汇编代码。

发展到现在,就英特尔的CPU 酷睿i7有上千种指令和指令变种,长度从一个字节到15个字节。

    

FORTRAN,是IBM1957年发布的语言,而主持FORTRAN的项目的总监John Backus说,他只是因为懒,所以就开发了新的语言,是的大部分新程序的开发是因为更高效率的开发,把一个月的开发时间编程一周,在变成一天。

    就FORTRAN使用效果来说,确实也达到了,平均FORTRAN写的程序要比同等的汇编写的代码少二十倍。然后FORTRAN编译器会把FORTRAN代码转为机器码。


    然后陆续新的语言不断产生,60年代有ALGOL、LISP和BASIC等语言;70年代有Pascal、C和Smalltalk;80年代有C++、Objectivs-C和Perl;90年代有Python、Ruby和Java;2000开始出现Swift、C#、Go。未来语言还会越来越多,新的语言用新的平台和新的技术,让我们可以快速的开发使用。

 这就是我分享CPU代码是如何执行起来,里面资料如果大家又想要的,可以关注我微信号回复CPU中的程序是怎么运行起来的,后台会自动把资料获取方式发给你,关于本篇文章如果大家有什么更好的思路,欢迎分享交流哈。

更多分享,扫码关注我

<think>好的,我现在要详细回答用户关于单片机程序启动和执行过程的问题。首先,我需要回忆之前学过的相关知识,并参考提供的引用内容,确保信息准确。 用户的问题集中在单片机程序如何启动和运行,所以需要分步骤解释。根据引用[2],提到启动过程类似微型工厂,分原材料准备、编译、硬件启动、执行等环节。我需要将这些步骤细化,结合自己的知识来组织内容。 首先,启动过程可能包括复位、初始化、时钟配置等。然后执行程序,需要提到从复位向量开始,加载到内存,执行main函数。同时,用户的引用中提到了编译和调试,这些可能属于程序运行前的步骤,但用户的问题更关注启动和执行,所以需要区分清楚。 可能的结构: 1. 上电复位阶段:硬件复位,寄存器初始化,时钟启动。 2. 程序加载:从存储器(如Flash)加载到内存,可能涉及启动文件。 3. 执行main函数前的初始化:比如C运行时环境设置,全局变量初始化等。 4. main函数执行:用户编写的程序逻辑开始运行。 5. 中断和事件处理:如果有中断,如何响应。 需要确保每个步骤都解释清楚,同时结合引用中的内容。例如,引用[2]提到编译过程,但用户的问题可能不需要详细讲编译,所以可能简要提及程序如何从代码变成可执行文件,再加载到单片机。 还需要考虑用户可能的疑问点,例如时钟配置的重要性,启动文件的作用,复位后的第一条指令位置等。此外,引用[3]提到测量程序运行时间,这可能与时钟配置有关联,可以适当提及。 需要检查是否所有术语都解释清楚,比如复位向量、启动文件、C运行时环境等,避免使用过于专业的术语而不加解释。同时,确保使用正确的LaTeX格式,例如变量或寄存器名称可能需要用$...$,比如$PC寄存器。 现在组织内容,确保步骤清晰,逻辑连贯。可能需要分成几个小节,每个步骤详细说明,并结合实际例子,比如从Flash读取指令,设置堆栈指针等。 最后,生成相关问题时要围绕启动过程、初始化步骤、存储器配置、调试方法等方面提问,帮助用户深入理解。</think>### 单片机程序的启动与执行过程 单片机程序运行过程分为硬件初始化、程序加载、代码执行三个阶段,其核心依赖于硬件电路、编译器与启动文件的协同工作。以下是具体步骤: --- #### 1. **上电复位与硬件初始化** - **复位电路触发**:单片机上电或复位时,复位电路将内部寄存器(如$PC$寄存器)设置为默认值,确保从预定义的地址(如`0x0000`)开始执行[^2]。 - **时钟系统启动**:内部/外部振荡器为CPU和外围设备提供时钟信号,例如使用$8\text{MHz}$外部晶振时,需通过寄存器配置分频系数以调整主频。 - **电源与看门狗初始化**:电压检测电路确保供电稳定,看门狗定时器(若启用)开始计数以防止程序跑飞。 --- #### 2. **程序加载与启动文件** - **从存储器加载代码**:编译后的程序(机器码)存储在Flash或ROM中,复位后由硬件自动将代码加载到内存(RAM)中。 - **启动文件(Startup File)作用**: - 初始化堆栈指针($SP$)和全局变量。 - 调用`main()`函数前的运行时环境配置,例如C语言的`__main()`函数会处理内存清零、静态变量赋值等。 --- #### 3. **代码执行流程** - **从复位向量跳转**:CPU从`0x0000`地址读取第一条指令(通常为跳转指令),跳转到`Reset_Handler`函数。 - **主程序运行**:执行用户编写的`main()`函数,包括初始化外设(如GPIO、UART)和主循环逻辑。 - **中断处理**:若发生中断,CPU暂停当前任务,根据中断向量表跳转到对应的中断服务程序(ISR)。 ```c // 示例:STM32启动文件中的复位处理 void Reset_Handler(void) { // 1. 初始化.data段(全局变量) // 2. 清零.bss段(未初始化变量) // 3. 配置系统时钟 SystemInit(); // 4. 调用用户main函数 __main(); } ``` --- #### 4. **关键机制与调试** - **时钟同步**:程序执行速度依赖时钟周期,例如指令$MOV \ R0, \#1$可能需要1-2个时钟周期。 - **调试工具**:通过SWD/JTAG接口可实时监测程序运行状态,或使用示波器测量引脚电平变化推算执行时间[^3]。 ---
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值