在前面我们讲述了DNN的模型与前向反向传播算法。而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一。CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结。
在学习CNN前,推荐大家先学习DNN的知识。如果不熟悉DNN而去直接学习CNN,难度会比较的大。这是我写的DNN的教程:
本文主要介绍了卷积神经网络(CNN)的基本结构,包括卷积层、池化层,并详细阐述了卷积层的卷积过程和池化层的工作原理,帮助读者理解CNN模型的核心组件。
在前面我们讲述了DNN的模型与前向反向传播算法。而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一。CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结。
在学习CNN前,推荐大家先学习DNN的知识。如果不熟悉DNN而去直接学习CNN,难度会比较的大。这是我写的DNN的教程:

被折叠的 条评论
为什么被折叠?