牛顿法

本文介绍了牛顿法在求解方程根和最优化问题中的应用。通过泰勒公式展开,牛顿法能迭代逼近方程根,对于非线性优化问题,牛顿法通过寻找目标函数的导数为0的点来优化。牛顿法相比梯度下降法通常更快收敛,但在高维情况下因Hessian矩阵的计算复杂性,常采用Quasi-Newton方法作为替代。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平时经常看到牛顿法怎样怎样,一直不得要领,今天下午查了一下维基百科,写写我的认识,很多地方是直观理解,并没有严谨的证明。在我看来,牛顿法至少有两个应用方向,1、求方程的根,2、最优化。牛顿法涉及到方程求导,下面的讨论均是在连续可微的前提下讨论。

 

1、求解方程。

并不是所有的方程都有求根公式,或者求根公式很复杂,导致求解困难。利用牛顿法,可以迭代求解。

原理是利用泰勒公式,在x0处展开,且展开到一阶,即f(x) = f(x0)+(x-x0)f'(x0)

求解方程f(x)=0,即f(x0)+(x-x0)*f'(x0)=0,求解x = x1=x0-f(x0)/f'(x0),因为这是利用泰勒公式的一阶展开,f(x) = f(x0)+(x-x0)f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值