目标检测(Object Detection)原理与实现

本文介绍了基于形变部件模型(Deformable Part Models)的目标检测方法,探讨了形变部件模型如何克服传统方法在处理大形变目标时的局限性,通过部件匹配和能量最小化实现目标检测。作者Pedro F. Felzenszwalb的论文对此进行了深入研究,结合HOG特征、latent SVM等技术,提出了一种有效的目标检测框架。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于形变部件模型(Deformable Part Models)的目标检测


        上节说了基于cascade的目标检测,cascade的级联思想可以快速抛弃没有目标的平滑窗(sliding window),因而大大提高了检测效率,但也不是没缺点,缺点就是它仅仅是个很弱的特征,用它做分类的检测器也是弱分类器,仅仅比随机猜的要好一些,它的精度靠的是多个弱分类器来实行一票否决式推举(就是大家都检测是对的)来提高命中率,确定分类器的个数也是经验问题。这节就来说说改进的特征,尽量使得改进的特征可以检测任何物体,当然Deep Learning学习特征很有效,但今天还是按论文发表顺序来说下其他方法,(服务器还没配置好,现在还不能大批跑Deep Learning ^.^),在第四节说了ASM并且简单的提了下AAM,这两个模型其实就是形变模型(deform model),说到基于形变模型检测物体的大牛,就不得说说芝加哥大学教授Pedro F. Felzenszwalb,Pedro发表很多有关基于形变部件来做目标检测的论文,并靠这个获得了VOC组委会授予的终身成就奖,另外它早期发表的《Belief propagation for early vision》也很出名,虽然比不上Science那样的开辟

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值