log算子&&dog算子

本文详细介绍了Laplacian of Gaussian (LOG) 算子和Difference of Gaussian (DOG) 算子在图像边缘检测中的作用。LOG算子通过高斯滤波降噪后使用Laplace算子,提高了对噪声的鲁棒性。DOG算子则是通过相邻尺度高斯滤波图像相减实现边缘检测。文中提供了相关理论分析、计算代码及参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景引言

在博文差分近似图像导数算子之Laplace算子中,我们提到Laplace算子对通过图像进行操作实现边缘检测的时,对离散点和噪声比较敏感。于是,首先对图像进行高斯暖卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声和离散点的Robust, 这一个过程中Laplacian of Gaussian(LOG)算子就诞生了。本节主要介绍LOG算子基本理论数学分析比较多些,最后,贴出用Mathcad软件实现的LOG代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值