1、推荐系统概述
电子商务网站是推荐系统应用的重要领域之一,当当网的图书推荐,大众点评的美食推荐,QQ好友推荐等等,推荐无处不在。
从企业角度,推荐系统的应用可以增加销售额等等,对于用户而言,系统仿佛知道我们的喜好并给出推荐也是非常美妙的事情。
推荐算法分类:
按数据使用划分:
- 协同过滤算法:UserCF, ItemCF, ModelCF
- 基于内容的推荐: 用户内容属性和物品内容属性
- 社会化过滤:基于用户的社会网络关系
按模型划分:
- 最近邻模型:基于距离的协同过滤算法
- Latent Factor Mode(SVD):基于矩阵分解的模型
- Graph:图模型,社会网络图模型
本文采用协同过滤算法来实现电影推荐。下面介绍下基于用户的协同过滤算法UserCF和基于物品的协同过滤算法ItemCF原理。
基于用户的协同过滤算法UserCF
基于用户的协同过滤,通过不同用户对物品的评分来评测用户之间的相似性,基于用户之间的相似性做出推荐。简单来讲就是:给用户推荐和他兴趣相似的其他用户喜欢的物品。