Python版本
Python-Seaborn 自定义函数绘制
我们可以通过自定义绘图函数的方式在统计图表中添加显著性标注,这里我们直接使用Seaborn自带的iris数据集进行绘制,具体内容如下:
自定义P值和星号对应关系
由于是完全的自定义,这里需要定义一个函数将P值结果和对应星号进行转化,代码如下:
def convert_pvalue_to_asterisks(pvalue):
if pvalue <= 0.0001:
return "****"
elif pvalue <= 0.001:
return "***"
elif pvalue <= 0.01:
return "**"
elif pvalue <= 0.05:
return "*"
return "ns"
scipy.stats 计算显著性指标
由于scipy.stats部分中提供多种显著性检验方法,如T-test、ANOVA等,由于篇幅有限,这里只介绍scipy.stats.ttest_ind() t检验方法,详细结算过程如下:
iris = sns.load_dataset("iris")
d