前言
论文:https://arxiv.org/pdf/1712.02856.pdf ;
代码和语料:https://github.com/hankcs/multi-criteria-cws 。
本文参见上面论文及代码,介绍了一种简洁优雅的多标准中文分词方案,可联合多个不同标准的语料库训练单个模型,同时输出多标准的分词结果。通过不同语料库之间的迁移学习提升模型的性能,在10个语料库上的联合试验结果优于绝大部分单独训练的模型。模型参数和超参数全部共享,复杂度不随语料库种类增长。
论文:https://arxiv.org/pdf/1712.02856.pdf ;
代码和语料:https://github.com/hankcs/multi-criteria-cws 。
本文参见上面论文及代码,介绍了一种简洁优雅的多标准中文分词方案,可联合多个不同标准的语料库训练单个模型,同时输出多标准的分词结果。通过不同语料库之间的迁移学习提升模型的性能,在10个语料库上的联合试验结果优于绝大部分单独训练的模型。模型参数和超参数全部共享,复杂度不随语料库种类增长。