甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。求A、B两地间的路程。
参考答案
甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。两车同时出发同时停止,共行了3个全程。说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是: (24O+6O)÷2=150(千米)
可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
一水库原有存水量一定,河水每天均匀入库。5台抽水机连续20天可抽干,6台同样的抽水机连续15天可抽干。若要求6天抽干,需要多少台同样的抽水机?
参考答案
水库原有的水与20天流入水可供多少台抽水机抽1天?
20×5=100(台)
水库原有水与15天流入的水可供多少台抽水机抽1天?
6×15=90(台) 每天流入的水可供多少台抽水机抽1天?
(100-90)÷(20-15)=2(台)
原有的水可供多少台抽水机抽1天?
100-20×2=60(台)
若6天抽完,共需抽水机多少台?
60÷6+2=12(台)
有一批正方形的砖,排成一个大的正方形,余下32块;如果将它改排成每边长比原来多一块砖的正方形,就要差49块。问这批砖原有多少块?
参考答案
两个正方形用的砖数相差: 32+49=81块, 相邻平方数的差构成1,3,5,7,…的等差数列,(81-1)/2=40, 所以说明412-402=81,所以这些砖有40^2+32=1632块
一个人上楼,他有两种走法,走一阶或走两阶,问他上30阶楼梯有几种走法?
参考答案
设上n级楼梯的走法为a(n),则a(n)的值等于是a(n-1)的值与a(n-2)的值的和,比如上5级楼梯的走法是4级楼梯走法和3级楼梯走法的和,因为走3到级时再走一次(2级)就到5级了,同样,走到4级时再走一级也到5级了。从而a(n)=a(n-1)+a(n-2),是斐波纳契数列。
显然1阶楼梯1种走法,a(1)=1,2阶楼梯2种走法,a(2)=2,所以a(3)=1+2=3,a(4)=2+3=5,a(5)=3+5=8,…,a(30)=1346269.
甲乙两车同时从A.B两地相向而行,在距B地54千米处相遇,他们各自到达对方车站后立即返回,在距A地42千米处相遇。A.B两地相距多少千米?(提示:相遇时他们行了3个全程)
参考答案
解答1
甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距B地54千米,说明行完一个全程时,乙行了54千米。两车同时出发同时停止,共行了3个全程。说明两车第二次相遇时乙车共行了:54×3=162(千米),从图中可以看出来甲车实际行了一个行程多42千米,所以A、B两地间的路程就是: 162-42=120(千米)
解答2
设A.B两地相距X千米
两车同时从A.B两地相向而行,在距B地54千米处相遇时,
他们的时间相等, 他们的速度相除为:54/(X—54)
在距A地42千米处相遇时: 他们的速度相除为(X—54+42)/(54+X—42)
他们的速度没有变法, 他们的速度相除值为定量,
所以: 54/(X—54)= (X—54+42)/(54+X—42)
方程式两侧同乘X—54, 54=(X—54) ×(X—12)/(X+12)
方程式两侧同乘(X+12), 54(X+12)= (X—54) (X—12)
54X+54×12=X2—54X—12X+54×12
X2—66X—54X=0
X(X—120)=0
X=0(不合题意) 或者说: (X—120)=0 X=120
5个空瓶可以换1瓶汽水,某班同学喝了161瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买汽水多少瓶?
参考答案
大致上可以这样想:先买161瓶汽水,喝完以后用这161个空瓶还可以换回32瓶(161÷5=32…1)汽水,然后再把这32瓶汽水退掉,这样一算,就发现实际上只需要买161-32=129瓶汽水。可以检验一下:先买129瓶,喝完后用其中125个空瓶(还剩4个空瓶)去换25瓶汽水,喝完后用25个空瓶可以换5瓶汽水,再喝完后用5个空瓶去换1瓶汽水,最后用这个空瓶和最开始剩下的4个空瓶去再换一瓶汽水,这样总共喝了:129+25+5+1+1=161瓶汽水.
N是1,2,3,…1995,1996,1997,的最小公倍数,请回答 N等于多少个2与一个奇数的积?:
参考答案
1到1997中1024=2^10,它所含的2的因数最多,所以最小公倍数中2的因数为10个,所以等于10个2与1个奇数的乘积。
某次数学竞赛共有10道选择题,评分办法是每一题答对一道得4分,答错一道扣1分,不答得0分.设这次竞赛最多有N种可能的成绩,则N应等于多少?
参考答案
从-10到40中只有16 33 34 37 38 39
这6个数是无法得到的,所以答案是51-6=45
在一个两位数之间插入一个数字,就变成一个三位数。例如:在72中间插入数字6,就变成了762。有些两位数中间插入数字后所得到的三位数是原来两位数的9倍,求出所有这样的两位数。
参考答案
对于这个题来说,首先要判断个位是多少,这个数的个位乘以9以后的个位还等于原来的个位,说明个位只能是0或5!先看0,很快发现不行,因为20×9=180,30×9=270,40×9=360等等,不管是几十乘以9,结果百位总比十位小,所以各位只能是5。略作计算,不难发现:15,25,35,45是满足要求的数
有50名学生参加联欢会,第一个到会的女同学同全部男生握过手,第二个到会的女生只差一个男生没握过手,第三个到会的女生只差2个男生没握过手,以此类推,最后一个到会的女生同7个男生握过手。问这些学生中有多少名男生?
参考答案
这是和差问题。我们可以这样想:如果这个班再多6个女生的话,最后一个女生就应该只与1个男生握手,这时,男生和女生一样多了,所以原来男生比女生多(7-1)6个人!男生人数就是:(50+6)÷2=28(人)。
甲、乙、丙三艘船共运货9400箱,甲船比乙船多运300箱,丙船比乙船少运200箱。求三艘船各运多少箱货?
参考答案
答案: 根据已知甲船比乙船多运30O箱,假设甲船同乙船运的一样多,那么甲船就要比原来少运300箱,结果三船运的总箱数就要减少300箱,变成(9400-300)箱。 又根据丙船比乙船少运200箱,假设丙船也同乙船运的一样多,那么丙船就要比原来多运200箱,结果三船总箱数就要增加200箱,变成(9400-300+200)箱。 经过这样调整,三船运的总箱数为(9400-300+200)。根据假设可知,这正好是乙船所运箱数的3倍,从而可求出动船运的箱数。 乙船运的箱数知道了,甲、丙两船运的箱数马上就可得到。
你来回答一下这个问题,20加上30,减去20,再加上30,再减去20,至少经过多少次运算,才能得到500?
参考答案
加到470需要(470-20)/(30-20)=45次加和减,一共是90次,然后还需要1次加30就能得到500,一共是91次
这篇博客包含了一系列数学应用问题的解答,涉及行程问题、水资源管理、几何排列、楼梯走法、相遇问题、抽水机效率计算、正方形砖块数量、上楼方式、三位数与原数关系、男生人数推理和货物运输等。通过这些问题,展示了数学在实际问题中的应用和解决思路。
7893

被折叠的 条评论
为什么被折叠?



