Co-prime
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 816 Accepted Submission(s): 283
Problem Description
Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
Input
The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
Output
For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
Sample Input
2 1 10 2 3 15 5
Sample Output
Case #1: 5 Case #2: 10/* 思路:通常我们求1~n中与n互质的数的个数都是用欧拉函数! 但如果n比较大或者是求1~m中与n互质的数的个数等等问题, 要想时间效率高的话还是用容斥原理! 容斥、先对n分解质因数,分别记录每个质因数, 那么所求区间内与某个质因数不互质的个数就是n / r(i),假设r(i)是r的某个质因子 假设只有三个质因子, 总的不互质的个数应该为p1+p2+p3-p1*p2-p1*p3-p2*p3+p1*p2*p3, 及容斥原理, 可以转向百度百科查看相关内容 pi代表n/r(i),即与某个质因子不互质的数的个数 ,当有更多个质因子的时候, 可以用状态压缩解决,二进制位上是1表示这个质因子被取进去了。 如果有奇数个1,就相加,反之则相减 */ #include<stdio.h> #include<string.h> #define MAX 1000 __int64 prime[MAX] ; //用来保存n的质因子 int l = 0 ; void Cprime(__int64 n) //求n的质因子 { for(int i = 2 ; i*i < n ; i ++) { if( n % i == 0 ){ prime[l++] = i ; while(!(n%i)) { n = n / i ; } } } if(n>1) prime[l++] = n ; } __int64 cal( __int64 x , __int64 n ) //求1-x之间和n互质的数的个数 { l = 0 ; Cprime(n); int i , j ; __int64 total = 0 ; for( i = 1 ; i < (1<<l) ; i ++) //用二进制来1,0来表示第几个素因子是否被用到,如m=3, //三个因子是2,3,5,则i=3时二进制是011,表示第2、3个因子被用到 { __int64 cnt = 0 , sum = 1 ; for( j = 0 ; j < l ; j ++) //遍历n的所有质因子,判断是否被用到 if( i & (1<<j)) //这里相当于将i二进制化,然后每位与如果为1,这表达式成立,否则不成立 { sum *=prime[j] ; cnt ++ ; } if(cnt%2) total +=x/sum ; else total -=x/sum ; } return x - total ; } int main(void) { int t,cnt = 1 ; scanf("%d",&t); while( t-- ) { __int64 a , b , n ; scanf("%I64d %I64d %I64d",&a,&b,&n); __int64 sum = cal(b , n ) - cal( a - 1 , n ) ; printf("Case #%d: %I64d\n",cnt++ , sum); } return 0; }