使用nodeitk进行对象识别

前言

东莞,晴,29至27度。忙了一天,终于可以写写东西了。今天继续昨天的话题,我们在昨天的例了基础上完善,通过匹配关键点求出映射从而找到场景中的已知对象。

目标

本文你将学习

  1. 采用nodeitk的findHomography和perspectiveTransform进行对象识别。
  2. 此外,例子基本包含nodeitk的一些基本数据结构的使用:NodeOpenCVMat, NodeOpenCVKeyPoint, NodeOpenCVPoint
  3. 上述基本的数据结构在nodeitk版本稳定后将会在使用手册中说明
代码

var node_itk = require('./node-itk');
var img_object = node_itk.cv.imread( "./images/box.png", node_itk.cv.CV_LOAD_IMAGE_GRAYSCALE );
var img_scene = node_itk.cv.imread( "./images/box_in_scene.png", node_itk.cv.CV_LOAD_IMAGE_GRAYSCALE );
minHessian = 400
detector = new node_itk.cv.NodeOpenCVFeatureDetector("SURF")
detector.Set("hessianThreshold", minHessian)
keypoints_object = detector.Detect( img_object );
keypoints_scene = detector.Detect( img_scene );
extractor = new node_itk.cv.NodeOpenCVDescriptorExtractor("SURF");
descriptors_object = extractor.Compute(img_object, keypoints_object)
descriptors_scene = extractor.Compute(img_scene, keypoints_scene)
matcher = new node_itk.cv.NodeOpenCVDescriptorMatcher("FlannBased");
matches = matcher.Match(descriptors_object, descriptors_scene);
max_dist=0
min_dist=100
for (var i = 0; i < descriptors_object.Rows(); i++ ) {
	dist = matches[i].GetDistance();
	if (dist < min_dist) min_dist = dist;
	if (dist > max_dist) max_dist = dist;
};
console.log("-- Max dist : " + max_dist + "\n")
console.log("-- Min dist : " + min_dist + "\n")
var good_matches = [];
for( var i = 0; i < descriptors_object.Rows(); i++ ){ 
	if( matches[i].GetDistance() <= 3*min_dist )
	{ good_matches.push( matches[i] ); }
}
img_matches = node_itk.cv.DrawMatches(img_object, keypoints_object, img_scene, keypoints_scene, good_matches);
var obj=[], scene=[];
for (var i = 0; i < good_matches.length; i++) {
	obj.push( keypoints_object[good_matches[i].GetQueryIdx()].PT() )
	scene.push( keypoints_scene[good_matches[i].GetTrainIdx()].PT() )
};

H = node_itk.cv.FindHomography( obj, scene, node_itk.cv.CV_RANSAC );

obj_corners = []
obj_corners[0] = new node_itk.cv.NodeOpenCVPoint("Point2d", [0,0])
obj_corners[1] = new node_itk.cv.NodeOpenCVPoint("Point2d", [img_object.Cols(),0])
obj_corners[2] = new node_itk.cv.NodeOpenCVPoint("Point2d", [img_object.Cols(),img_object.Rows()])
obj_corners[3] = new node_itk.cv.NodeOpenCVPoint("Point2d", [0,img_object.Rows()])

tmp = new node_itk.cv.NodeOpenCVPoint("Point2d", [img_object.Cols(),0]);
color = new node_itk.cv.NodeOpenCVScalar("Scalar", [0,255,0]);
scene_corners = node_itk.cv.PerspectiveTransform(obj_corners, H.res);
node_itk.cv.Line(img_matches, scene_corners[0].Add(tmp), scene_corners[1].Add(tmp), color, 2)
node_itk.cv.Line(img_matches, scene_corners[1].Add(tmp), scene_corners[2].Add(tmp), color, 2)
node_itk.cv.Line(img_matches, scene_corners[2].Add(tmp), scene_corners[3].Add(tmp), color, 2)
node_itk.cv.Line(img_matches, scene_corners[3].Add(tmp), scene_corners[0].Add(tmp), color, 2)
node_itk.cv.NamedWindow( "Good Matches & Object detection", node_itk.cv.CV_WINDOW_AUTOSIZE );
node_itk.cv.imshow( "Good Matches & Object detection", img_matches );
node_itk.cv.WaitKey ( 0 );

结果


小结

本文是昨天话题的深化,代码依然比较简洁。这是nodeitk遵循的原则:以简单的方式快速实现图像处理应用。喜欢的朋友就点踩,想说点东西的就评论吧!^_^ 待续

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值