-Parameters: 一个5 x 1的矩阵,从上到下依次表示:
-s SVM类型(默认0);
-t 核函数类型(默认2)
-d 核函数中的degree设置(针对多项式核函数)(默认3);
-g 核函数中的r(gamma)函数设置(针对多项式/rbf/sigmoid核函数) (默认类别数目的倒数);
-r 核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)
-nr_class: 表示数据集中有多少类别,比如二分类时这个值即为2。
-totalSV: 表示支持向量的总数。
-rho: 决策函数wx+b中的常数项的相反数(-b)。
-Label: 表示数据集中类别的标签,比如二分类常见的1和-1。
-ProbA: 使用-b参数时用于概率估计的数值,否则为空。
-ProbB: 使用-b参数时用于概率估计的数值,否则为空。
-nSV: 表示每类样本的支持向量的数目,和Label的类别标签对应。如Label=[1; -1],nSV=[63; 67],则标签为1的样本有63个支持向量,标签为-1的有67个。
-sv_coef: 表示每个支持向量在决策函数中的系数。
-SVs: 表示所有的支持向量,如果特征是n维的,支持向量一共有m个,则为m x n的稀疏矩阵。
svmtrain的返回参数
最新推荐文章于 2022-01-21 14:52:08 发布
本文深入解析SVM(支持向量机)的参数设置,包括SVM类型、核函数类型及参数、类别数目、支持向量数量、决策函数常数项等关键概念,帮助读者理解SVM的工作原理和调参技巧。
1万+

被折叠的 条评论
为什么被折叠?



