【Machine Learning】Suitable Learning Rate in Machine Learning

本文探讨了不同学习率对梯度下降算法的影响,包括可能达到收敛或导致不理想结果的情况。还介绍了如何实时调整学习率以适应模型,如使用误差函数值动态改变学习率的方法,以及在深度学习框架中常见的学习率选择范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、The cases of different learning rates:

        In the gradient descent algorithm model:

w = w - \alpha \frac{ \partial J(w,b) }{ \partial w }

        \alpha is the learning rate of the demand, how to determine the learning rate, and what impact does it have if it is too large or too small? We will analyze it through the following graph:

        We can use the same method as before to understand this equation, so that b in J (w, b) is 0, and then we can create a two-dimensional coordinate graph:

        So let's first observe the case of a smaller learning rate (starting from F):

        In this case, there is a high probability that the minimum point can be found, which means that it can eventually converge.

        Then there are situations with high learning rates:

        We can find that when the learning rate is high but within a certain limit, convergence can also be achieved. The reason for this can be started from the formula. Whenever a point drops to a point with a smaller slope, its learning rate remains unchanged, but the slope decreases, and it will eventually continue to decline until convergence. However, will this situation continue? We can take a look at the following situation:

        The difference between this and the above is that when descending, it may just skip the optimal point, which may result in the convergence value not being optimal.

        Finally, there is the case of divergence:

        So the situation is roughly like these:

        In the picture, loss is an indicator that measures the difference between the predicted results of the model and the actual labels, and epoch is a complete training process in the gradient descent algorithm, which includes multiple iterations of parameter updates.

二、How to choose the Suitable Learning Rate:

        In algorithm design, we should adjust the learning rate in real time and determine the size of the adjustment by observing the fitted model. After each iteration, use the estimated model parameters to view the value of the error function. If the error rate decreases compared to the previous iteration, the learning rate can be increased. If the error rate increases compared to the previous iteration, the value of the previous iteration should be reset and the learning rate reduced to 50% of the previous iteration. Therefore, this is a method of adaptive learning rate adjustment. There are simple and direct methods for dynamically changing learning rates in deep learning frameworks such as Caffe and TensorFlow.

        The commonly used learning rates are 0.00001, 0.0001, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值