目录
1 -> 红黑树
1.1 -> 红黑树的概念
红黑树,是一种二叉搜索树,但在每个节点上增加了一个存储位表示节点的颜色,可以是Red或Black。通过对任何一条从根到叶子的路径上各个节点着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是接近平衡的。
1.2 -> 红黑树的性质
- 每个节点不是红色就是黑色。
- 根节点是黑色的。
- 如果一个节点是红色的,则它的两个孩子节点是黑色的。
- 对于每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。
- 每个叶子节点都是黑色的(此处的叶子节点指空节点)。
1.3 -> 红黑树节点的定义
#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
// 节点的颜色
enum Color
{
RED, BLACK
};
// 红黑树节点的定义
template<class ValueType>
struct RBTreeNode
{
RBTreeNode(const ValueType& data = ValueType(),Color color = RED)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _color(color)
{}
RBTreeNode<ValueType>* _pLeft; // 节点的左孩子
RBTreeNode<ValueType>* _pRight; // 节点的右孩子
RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)
ValueType _data; // 节点的值域
Color _color; // 节点的颜色
};
1.4 -> 红黑树的结构
为了后续实现关联式容器更加简单,红黑树的实现中增加一个头节点,因为根节点必须是黑色的,为了与根节点区分开,将头节点给成黑色,并且让头节点的pParent域指向红黑树的根节点,pLeft域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点。
1.5 -> 红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可以分为两步:
1. 按照二叉搜索树的树规则插入新节点。
template<class ValueType>
struct RBTree
{
bool Insert(const ValueType& data)
{
PNode& pRoot = GetRoot();
if (nullptr == pRoot)
{
pRoot = new Node(data, BLACK);
// 根的双亲为头节点
pRoot->_pParent = _pHead;
_pHead->_pParent = pRoot;
}
else
{
// 1. 按照二叉搜索的树方式插入新节点
// 2. 检测新节点插入后,红黑树的性质是否造到破坏,
// 若满足直接退出,否则对红黑树进行旋转着色处理
}
// 根节点的颜色可能被修改,将其改回黑色
pRoot->_color = BLACK;
_pHead->_pLeft = LeftMost();
_pHead->_pRight = RightMost();
return true;
}
private:
PNode& GetRoot()
{
return _pHead->_pParent;
}
// 获取红黑树中最小节点,即最左侧节点
PNode LeftMost();
// 获取红黑树中最大节点,即最右侧节点
PNode RightMost();
private:
PNode _pHead;
}
2. 检测新节点插入后,红黑树的性质是否遭到破坏。
因为新节点的默认颜色为红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树的任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三,即不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
- 情况一:cur为红,p为红,g为黑,u存在且为红。
注意:此处看到的树可能是一棵完整的树,也可能是一棵子树。
如果g是根节点,调整完成后,需要将g改为黑色。
如果g是子树,g一定有双亲,且g的双亲如果是红色,就需要继续向上调整。
cur和p均为红,违反了性质三。
解决方法:将p、u改为黑,g改为红,然后把g当成cur,继续向上调整。
- 情况二:cur为红,p为红,g为黑,u不存在/u存在且为黑。
说明: