这个困惑非常典型,这正是从"理解者"到"创造者"的关键跃迁阶段。让我们用建造房子的比喻,结合具体代码实例,拆解这个转化过程:
示例代码(已加注释):
import os
import platform
import time
import math
import warnings
import torch
import torch.distributed as dist
from torch import optim
from torch.nn.parallel import DistributedDataParallel
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader, DistributedSampler
from contextlib import nullcontext
from model.model import Transformer
from model.LMConfig import LMConfig
from model.dataset import PretrainDataset
# 忽略警告信息
warnings.filterwarnings('ignore')
# 定义日志打印函数,仅在主进程(rank 0)打印日志信息
def Logger(content):
if not ddp or dist.get_rank() == 0:
print(content)
# 定义学习率调度函数,根据当前迭代次数计算学习率,采用余弦退火策略
def get_lr(it, all):
warmup_iters = 0 # 预热迭代次数
lr_decay_iters = all # 学习率衰减的总迭代次数
min_lr = learning_rate / 10 # 最小学习率
# 如果当前迭代次数小于预热迭代次数,使用线性预热策略
if it < warmup_iters:
return learning_rate * it / warmup_iters
# 如果当前迭代次数大于衰减迭代次数,返回最小学习率
if it > lr_decay_iters:
return min_lr
# 计算衰减系数,使用余弦退火策略
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (learning_rate - min_lr)
# 定义训练 epoch 的函数
def train_epoch(epoch, accumulation_steps=8):
start_time = time.time() # 记录开始时间
for step, (X, Y) in enumerate(train_loader): # 遍历数据加载器
X = X.to(device) # 将输入数据移动到设备上
Y = Y.to(device) # 将目标数据移动到设备上
lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch) # 计算当前学习率
for param_group in optimizer.param_groups:
param_group['lr'] = lr # 设置优化器的学习率
with ctx: # 使用混合精度训练(如果设备是 GPU)
out = model(X, Y) # 前向传播,计算输出
loss = out.last_loss / accumulation_steps # 计算损失,并进行梯度累积
scaler.scale(loss).backward() # 反向传播,计算梯度
# 每 accumulation_steps 步进行一次梯度更新
if (step + 1) % accumulation_steps == 0:
scaler.unscale_(optimizer) # 反缩放梯度
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) # 梯度裁剪
scaler.step(optimizer) # 更新模型参数
scaler.update() # 更新缩放器
optimizer.zero_grad(set_to_none=True) # 清空梯度
# 每 100 步打印一次训练信息
if step % 100 == 0:
spend_time = time.time() - start_time # 计算已用时间
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
epoch,
epochs,
step,
iter_per_epoch,
loss.item() * accumulation_steps,
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
# 每 1000 步保存一次模型
if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank()<