这个问题可以被建模为最小覆盖圆问题(Minimum Covering Circle Problem),其中平面被一个固定半径的圆覆盖。为了使移动的距离最短,我们希望找到一个最小半径的圆。
以下是用 MATLAB 实现 Welzl 算法解决最小覆盖圆问题的代码:
```matlab
function circle = welzl(points, boundary)
if size(boundary, 1) == 3
circle = circumcircle(boundary(1, :), boundary(2, :), boundary(3, :));
return;
elseif isempty(points) && size(boundary, 1) == 2
circle = circumcenter(boundary(1, :), boundary(2, :));
return;
elseif isempty(points)
circle = [];
return;
end
p = points(end, :);
points(end, :) = [];
circle = welzl(points, boundary);
if ~isempty(circle) && distance(circle.center, p) <= circle.radius
return;
end
boundary = [boundary; p];
circle = welzl(points, boundary);
boundary(end, :) = [];
return;
end
function d = distance(p1, p2)
x1 = p1(1);
y1 = p1(2);
x2 = p2(1);
y2 = p2(2);
d = sqrt((x2 - x1)^2 + (y2 - y1)^2);
end
function circle = circumcircle(p1, p2, p3)
x1 = p1(1);
y1 = p1(2);
x2 = p2(1);
y2 = p2(2);
x3 = p3(1);
y3 = p3(2);
d = 2 * (x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2));
ux = ((x1^2 + y1^2)*(y2-y3) + (x2^2 + y2^2)*(y3-y1) + (x3^2 + y3^2)*(y1-y2)) / d;
uy = ((x1^2 + y1^2)*(x3-x2) + (x2^2 + y2^2)*(x1-x3) + (x3^2 + y3^2)*(x2-x1)) / d;
radius = distance([ux, uy], p1);
circle.center = [ux, uy];
circle.radius = radius;
end
function circle = circumcenter(p1, p2)
x1 = p1(1);
y1 = p1(2);
x2 = p2(1);
y2 = p2(2);
ux = (x1 + x2) / 2;
uy = (y1 + y2) / 2;
radius = distance([ux, uy], p1);
circle.center = [ux, uy];
circle.radius = radius;
end
% 生成随机点集
points = rand(30, 2) * 10;
% 求解最小覆盖圆
boundary = [];
circle = welzl(points, boundary);
disp(['最小覆盖圆的中心:', num2str(circle.center)]);
disp(['最小覆盖圆的半径:', num2str(circle.radius)]);
```
在这个 MATLAB 代码示例中,我们生成了一个随机的点集,并通过调用 `welzl` 函数来解决最小覆盖圆问题。最后输出了最小覆盖圆的中心和半径。
你可以根据实际情况将代码适应到你的平面和覆盖面积尺寸上。