C++ 二叉树进阶

二叉搜索树
 

二叉搜索树概念
 

二叉搜索树又称二叉排序树/二叉查找树,它可以是空树/具有以下性质的二叉树:


若它的左子树不为空,则左子树上所有节点的值都小于根节点的值

若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
它的左右子树也分别为二叉搜索树
 

二叉搜索树操作
 

1. 二叉搜索树的查找


a 从根开始比较,比根大则往右边走,比根小则往左边走

b 走到到空,还没找到,则这个值不存在
 

2. 二叉搜索树的插入


a 树为空,则直接新增节点,赋值给root指针,成为根节点

b 树不空,按二叉搜索树性质查找插入位置,插入新节点

3 二叉搜索树的删除

首先查找元素是否在二叉搜索树中,若不存在,则返回,若存在,则有以下情况:

a  要删除的结点无孩子结点
b  要删除的结点只有左孩子结点
c  要删除的结点只有右孩子结点
d  要删除的结点有左、右孩子结点
 

其中a可以归并到b,c中,所以实际上真正的情况只有三种:

b的解决方案:(直接删除法)删除该结点且使被删除节点的父结点指向被删除节点的左孩子

c的解决方案:(直接删除法)删除该结点且使被删除节点的父结点指向被删除结点的右孩子

d的解决方案:(替换法)找出右子树的最小节点,将它与被删除节点的值替换,再处理删除问题

若是删除7和14,则是直接删除法

若是删除3,则是替换法 

二叉搜索树的实现
 

template<class K>
struct BSTreeNode
{
	BSTreeNode<K>* _left;
	BSTreeNode<K>* _right;
	K _key;

	BSTreeNode(const K&key)
		:_left(nullptr)
		,_right(nullptr)
		,_key(key)
	{}
};

template<class K>
class BSTree
{
	typedef BSTreeNode<K> Node;
public:
	bool Insert(const K& key)
	{
		if (_root == nullptr)//第一次插入
		{
			_root = new Node(key);
			return true;
		}
		
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			parent = cur;
			if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else
			{
					return false;
			}
		}

		cur = new Node(key);//新节点
		if (parent->_key < key)//链接
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		return true;
	}

	bool Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else
			{
				return true;
			}
		}
		return false;
	}

	bool Erase(const K& key)
	{
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else//找到了,开始删除
			{
				if (cur->_left == nullptr)//被删除节点只有右孩子
				{
					if (cur == _root)//若是当前被删除节点位根
					{
						_root = cur->_right;
					}
					else//删除的不是根节点
					{
						if (cur == parent->_left)//被删除节点在父节点的左边
						{
							parent->_left = cur->_right;//它的父节点接管它的右孩子
						}
						else//被删除节点在父节点的右边
						{
							parent->_right = cur->_right;
						}
					}
					delete cur;
				}
				else if (cur->_right == nullptr)//被删除节点只有左孩子
				{
					if (cur == _root)
					{
						_root = cur->_left;
					}
					else
					{
						if (cur == parent->_left)
						{
							parent->_left = cur->_left;
						}
						else
						{
							parent->_right = cur->_left;
						}
					}
					delete cur;
				}
				else//被删除节点左右孩子都有(替换法)
				{
					Node* parent = cur;
					Node* subLeft = cur->_right;
					while (subLeft->_left)//找到右子树的最小节点(最左节点)
					{
						parent = subLeft;
						subLeft = subLeft->_left;
					}
					swap(subLeft->_key, cur->_key);
					if (subLeft == parent->_left)//最左节点在左边
					{
						parent->_left = subLeft->_right;
					}
					else//最左节点在右边(当右子树的根节点就是右子树的最小节点时)
					{
						parent->_right = subLeft->_right;
					}
					delete subLeft;
				}
				return true;
			}
		}
		return false;
	}

	void InOrder()
	{
		
		_InOrder(_root);
		cout << endl;
	}

	bool FindR(const K& key)//递归版本(需要封装一层,因为需要传入_root)
	{
		return _FindR(_root, key);
	}

	bool InsertR(const K& key)//递归版本
	{
		return _InsertR(_root, key);
	}

	bool EraseR(const K& key)//递归版本
	{
		return _EraseR(_root, key);
	}

private:

	bool _EraseR(Node* &root, const K& key)
	{
		if (root == nullptr)
			return false;

		if (root->_key < key)
		{
			return _EraseR(root->_right, key);
		}
		else if (root->_key > key)
		{
			return _EraseR(root->_left, key);
		}
		else//找到了,开始删除
		{
			if (root->_left == nullptr)//被删除节点只有右孩子
			{
				Node* del = root;
				root = root->_right;
				delete del;
				return true;
			}
			else if (root->_right == nullptr)//被删除节点只有左孩子
			{
				Node* del = root;
				root = root->_left;
				delete del;
				return true;
			}
			else//被删除节点有左右孩子
			{
				Node* subLeft = root->_right;//找右子树中的最小节点
				while (subLeft->_left)
				{
					subLeft = subLeft->_left;
				}

				swap(subLeft->_key, root->_key);
				return _EraseR(root->_right, key);
			}
		}
	}

	bool _InsertR(Node* &root, const K& key)
	{
		if (root == nullptr)
		{
			root = new Node(key);
			return true;
		}
		
		if (root->_key < key)
		{
			return  _InsertR(root->_right, key);
		}
		else if (root->_key > key)
		{
			return  _InsertR(root->_left, key);
		}
		else
		{
			return false;
		}

	}

	bool _FindR(Node* root, const K& key)
	{
		if (root == nullptr)
			return false;
		if (root->_key < key)
		{
			return _FindR(root->_right, key);
		}
		else if (root->_key > key)
		{
			return _FindR(root->_left, key);
		}
		else
		{
			return true;
		}
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;
		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	}
private:
	Node* _root = nullptr;
};

测试:

int main()
{
	int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	BSTree<int> bt;
	for (auto e : a)
	{
		bt.Insert(e);
	}
	bt.InOrder();

	bt.EraseR(14);
	bt.InOrder();

	bt.Erase(3);
	bt.InOrder();

	cout << bt.Find(1) << endl << bt.FindR(13) << endl << bt.Find(18) << endl;
	return 0;
}

二叉搜索树的应用
 

1 Key的搜索模型(K模型):只有key作为关键码,结构中只需要存储Key

   用于确定一个值(Key)在不在,如门禁系统都是Key的搜索模型
2 Key/Value的搜索模型(KV模型)):

每一个关键码key,都有与之对应的值Value,即<Key,Value>的键值对
  a 可以确定Key在不在

  b 通过Key查找Value

如英汉字典(通过英文可以快速找到对应的中文)英文与对应中文即构成键值对

如统计单词出现的次数(统计成功后,给定单词就可快速找到其出现的次数)

单词与其出现次数即构成键值对

k模型与kv模型的代码实现基于二叉搜索树的代码实现,区别不大,只是kv模型需要存储key和value

K模型的代码实现:

namespace key
{
	template<class K>
	struct BSTreeNode
	{
		BSTreeNode<K>* _left;
		BSTreeNode<K>* _right;
		K _key;

		BSTreeNode(const K& key)
			:_left(nullptr)
			, _right(nullptr)
			, _key(key)
		{}
	};

	template<class K>
	class BSTree
	{
		typedef BSTreeNode<K> Node;
	public:
		bool Insert(const K& key)
		{
			if (_root == nullptr)
			{
				_root = new Node(key);
				return true;
			}

			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				parent = cur;
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(key);
			if (parent->_key < key)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}
			return true;
		}

		bool Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return true;
				}
			}
			return false;
		}

		bool Erase(const K& key)
		{
			Node* cur = _root;
			Node* parent = nullptr;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					if (cur->_left == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							if (cur == parent->_left)
							{
								parent->_left = cur->_right;
							}
							else
							{
								parent->_right = cur->_right;
							}
						}
						delete cur;
					}
					else if (cur->_right == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							if (cur == parent->_left)
							{
								parent->_left = cur->_left;
							}
							else
							{
								parent->_right = cur->_left;
							}
						}
						delete cur;
					}
					else
					{
						Node* parent = cur;
						Node* subLeft = cur->_right;
						while (subLeft->_left)
						{
							parent = subLeft;
							subLeft = subLeft->_left;
						}
						swap(subLeft->_key, cur->_key);
						if (subLeft == parent->_left)
						{
							parent->_left = subLeft->_right;
						}
						else
						{
							parent->_right = subLeft->_right;
						}
						delete subLeft;
					}
					return true;
				}
			}
			return false;
		}

		void InOrder()
		{

			_InOrder(_root);
			cout << endl;
		}

		bool FindR(const K& key)
		{
			return _FindR(_root, key);
		}

		bool InsertR(const K& key)
		{
			return _InsertR(_root, key);
		}

		bool EraseR(const K& key)
		{
			return _EraseR(_root, key);
		}

		BSTree() = default;//默认构造(c++11)

		~BSTree()
		{
			Destroy(_root);
		}

		BSTree(const BSTree<K>& t)
		{
			_root = Copy(t._root);
		}

		BSTree<K>& operator=(BSTree<K> t)
		{
			swap(_root, t._root);
			return *this;
		}


	private:

		Node* Copy(Node* root)
		{
			if (root == nullptr)
				return nullptr;

			Node* newRoot = new Node(root->_key);
			newRoot->_left = Copy(root->_left);
			newRoot->_right = Copy(root->_right);
			return newRoot;
		}

		void Destroy(Node*& root)
		{
			if (root == nullptr)
				return;
			Destroy(root->_left);
			Destroy(root->_right);
			delete root;
			root = nullptr;
		}

		bool _EraseR(Node*& root, const K& key)
		{
			if (root == nullptr)
				return false;

			if (root->_key < key)
			{
				return _EraseR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _EraseR(root->_left, key);
			}
			else
			{
				if (root->_left == nullptr)
				{
					Node* del = root;
					root = root->_right;
					delete del;
					return true;
				}
				else if (root->_right == nullptr)
				{
					Node* del = root;
					root = root->_left;
					delete del;
					return true;
				}
				else
				{
					Node* subLeft = root->_right;
					while (subLeft->_left)
					{
						subLeft = subLeft->_left;
					}

					swap(subLeft->_key, root->_key);
					return _EraseR(root->_right, key);
				}
			}
		}

		bool _InsertR(Node*& root, const K& key)
		{
			if (root == nullptr)
			{
				root = new Node(key);
				return true;
			}

			if (root->_key < key)
			{
				return  _InsertR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return  _InsertR(root->_left, key);
			}
			else
			{
				return false;
			}

		}

		bool _FindR(Node* root, const K& key)
		{
			if (root == nullptr)
				return false;
			if (root->_key < key)
			{
				return _FindR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _FindR(root->_left, key);
			}
			else
			{
				return true;
			}
		}

		void _InOrder(Node* root)
		{
			if (root == nullptr)
				return;
			_InOrder(root->_left);
			cout << root->_key << " ";
			_InOrder(root->_right);
		}
	private:
		Node* _root = nullptr;
	};

}

测试:

void test1Key()
{
	int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	key::BSTree<int> bt;
	for (auto e : a)
	{
		bt.Insert(e);
	}
	bt.InOrder();

	bt.EraseR(14);
	bt.InOrder();

	bt.Erase(3);
	bt.InOrder();

	cout << bt.Find(1) << endl << bt.FindR(13) << endl << bt.Find(18) << endl;
}

void test2Key()
{
	int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	key::BSTree<int> bt;
	for (auto e : a)
	{
		bt.InsertR(e);
	}
	bt.InOrder();
	
	key::BSTree<int> copy(bt);
	copy.InOrder();	 

	key::BSTree<int> bt2;
	bt2 = copy;
	bt2.InOrder();
}

test1Key(): 

 

test2Key(): 

 

KV模型的代码实现:

namespace key_value
{
	template<class K,class V>
	struct BSTreeNode
	{
		BSTreeNode<K,V>* _left;
		BSTreeNode<K,V>* _right;
		K _key;
		V _value;

		BSTreeNode(const K& key,const V& value)
			:_left(nullptr)
			, _right(nullptr)
			, _key(key)
			, _value(value)
		{}
	};

	template<class K,class V>
	class BSTree
	{
		typedef BSTreeNode<K,V> Node;
	public:
		bool Insert(const K& key,const V&value)
		{
			if (_root == nullptr)
			{
				_root = new Node(key,value);
				return true;
			}

			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				parent = cur;
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(key,value);
			if (parent->_key < key)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}
			return true;
		}

		Node* Find(const K& key)//通过Key找对应的Value,只需返回Key所在节点
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return cur;
				}
			}
			return nullptr;
		}

		bool Erase(const K& key)
		{
			Node* cur = _root;
			Node* parent = nullptr;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					if (cur->_left == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							if (cur == parent->_left)
							{
								parent->_left = cur->_right;
							}
							else
							{
								parent->_right = cur->_right;
							}
						}
						delete cur;
					}
					else if (cur->_right == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							if (cur == parent->_left)
							{
								parent->_left = cur->_left;
							}
							else
							{
								parent->_right = cur->_left;
							}
						}
						delete cur;
					}
					else
					{
						Node* parent = cur;
						Node* subLeft = cur->_right;
						while (subLeft->_left)
						{
							parent = subLeft;
							subLeft = subLeft->_left;
						}
						swap(subLeft->_key, cur->_key);
						if (subLeft == parent->_left)
						{
							parent->_left = subLeft->_right;
						}
						else
						{
							parent->_right = subLeft->_right;
						}
						delete subLeft;
					}
					return true;
				}
			}
			return false;
		}

		void InOrder()
		{

			_InOrder(_root);
			cout << endl;
		}

		Node* FindR(const K& key)
		{
			return _FindR(_root, key);
		}

		bool InsertR(const K& key,const V&value)
		{
			return _InsertR(_root, key,value);
		}

		bool EraseR(const K& key)
		{
			return _EraseR(_root, key);
		}

		BSTree() = default;//默认构造(c++11)

		~BSTree()
		{
			Destroy(_root);
		}

		BSTree(const BSTree<K,V>& t)
		{
			_root = Copy(t._root);
		}

		BSTree<K,V>& operator=(BSTree<K,V> t)
		{
			swap(_root, t._root);
			return *this;
		}


	private:

		Node* Copy(Node* root)
		{
			if (root == nullptr)
				return nullptr;

			Node* newRoot = new Node(root->_key,root->_value);
			newRoot->_left = Copy(root->_left);
			newRoot->_right = Copy(root->_right);
			return newRoot;
		}

		void Destroy(Node*& root)
		{
			if (root == nullptr)
				return;
			Destroy(root->_left);
			Destroy(root->_right);
			delete root;
			root = nullptr;
		}

		bool _EraseR(Node*& root, const K& key)
		{
			if (root == nullptr)
				return false;

			if (root->_key < key)
			{
				return _EraseR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _EraseR(root->_left, key);
			}
			else
			{
				if (root->_left == nullptr)
				{
					Node* del = root;
					root = root->_right;
					delete del;
					return true;
				}
				else if (root->_right == nullptr)
				{
					Node* del = root;
					root = root->_left;
					delete del;
					return true;
				}
				else
				{
					Node* subLeft = root->_right;
					while (subLeft->_left)
					{
						subLeft = subLeft->_left;
					}

					swap(subLeft->_key, root->_key);
					return _EraseR(root->_right, key);
				}
			}
		}

		bool _InsertR(Node*& root, const K& key,const V&value)
		{
			if (root == nullptr)
			{
				root = new Node(key,value);
				return true;
			}

			if (root->_key < key)
			{
				return  _InsertR(root->_right, key,value);
			}
			else if (root->_key > key)
			{
				return  _InsertR(root->_left, key, value);
			}
			else
			{
				return false;
			}

		}

		Node* _FindR(Node* root, const K& key)
		{
			if (root == nullptr)
				return nullptr;
			if (root->_key < key)
			{
				return _FindR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _FindR(root->_left, key);
			}
			else
			{
				return root;
			}
		}

		void _InOrder(Node* root)
		{
			if (root == nullptr)
				return;
			_InOrder(root->_left);
			cout << root->_key << ":"<<root->_value<<endl;
			_InOrder(root->_right);
		}
	private:
		Node* _root = nullptr;
	};

}

测试:

void test1KeyValue()
{
	key_value::BSTree<string, string> dict;
	dict.Insert("sort", "排序");
	dict.Insert("left", "左边");
	dict.Insert("right", "右边");
	dict.Insert("insert", "插入");
	dict.Insert("key", "关键字");

	string str;
	while (cin>>str)
	{
		key_value::BSTreeNode<string, string>* ret = dict.Find(str);
		if (ret)
		{
			cout << ret->_value << endl;
		}
		else
		{
			cout << "无此单词" << endl;
		}
	}
}

void test2KeyValue()
{
	string arr[] = { "苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜","苹果", "香蕉", "苹果", "香蕉" };
	key_value::BSTree<string, int> countTree;
	for (const auto& str : arr)
	{
		// 先查找水果在不在搜索树中
		// 1、不在,说明水果第一次出现,则插入<水果, 1>
		// 2、在,则查找到的节点中水果对应的次数++
		key_value::BSTreeNode<string, int>* ret = countTree.Find(str);
		if (ret == nullptr)
		{
			countTree.Insert(str, 1);
		}
		else
		{
			ret->_value++;
		}
	}
	countTree.InOrder();
}

void test3KeyValue()
{
	key_value::BSTree<string, string> dict;
	dict.Insert("sort", "排序");
	dict.Insert("left", "左边");
	dict.Insert("right", "右边");
	dict.Insert("insert", "插入");
	dict.InsertR("key", "关键字");
	dict.Erase("key");
	dict.EraseR("insert");
	dict.InOrder();
	key_value::BSTreeNode<string, string> *ret = dict.Find("right");
	if (ret)
	{
		cout << ret->_value << endl;
	}

	key_value::BSTreeNode<string, string>* ret2 = dict.FindR("sort");
	if (ret2)
	{
		cout << ret2->_value << endl;
	}
	cout << endl;
	
	key_value::BSTree<string, string> dict2;
	dict2 = dict;
	dict2.InOrder();
	
	key_value::BSTree<string, string> dict3(dict);
	dict3.InOrder();

}

test1KeyValue():

test2KeyValue():

 

test3KeyValue():

二叉搜索树的插入和删除操作都必须先查找

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),则查找效率为O(logN)



 最差情况下,二叉搜索树退化为单支树(或者类似单支),则查找效率为O(N)

 退化成单支树,二叉搜索树的性能就失去了,解决方案:平衡搜索二叉树->AVL树,红黑树

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值