问题:
使用java语言,编写一个Hadoop程序,结合HBase对大数据进行快速筛查。
解答思路:
在Java中编写一个结合Hadoop和HBase的程序进行大数据的快速筛查,通常需要以下步骤:
1. 配置Hadoop和HBase环境。
2. 创建HBase表。
3. 编写MapReduce作业来加载数据到HBase。
4. 编写MapReduce作业来从HBase中进行数据筛查。
以下是一个简单的例子,展示了如何实现这些步骤:
步骤1:配置Hadoop和HBase
确保系统中已经安装了Hadoop和HBase,并且已经配置好环境变量。
步骤2:创建HBase表
首先,需要创建一个HBase表。这通常通过HBase shell完成,或者通过编写一个Java程序来完成。
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
public class CreateHBaseTable {
public static void main(String[] args) throws Exception {
// 创建HBase配置
Connection connection = ConnectionFactory.createConnection(HBaseConfiguration.create());
Admin admin = connection.getAdmin();
// 创建表名
TableName tableName = TableName.valueOf("myTable");
// 创建表描述
org.apache.hadoop.hbase.HTableDescriptor tableDescriptor = new org.apache.hadoop.hbase.HTableDescriptor(tableName);
tableDescriptor.addFamily(new org.apache.hadoop.hbase.HColumnDescriptor("cf"));
// 创建表
admin.createTable(tableDescriptor);
// 关闭连接
admin.close();
connection.close();
}
}
步骤3:编写MapReduce作业来加载数据到HBase
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.NullWritable;
public class LoadDataToHBase {
public static class LoadDataMapper extends TableMapper<NullWritable, Put> {
private org.apache.hadoop.hbase.client.Put put;
private Connection connection;
private org.apache.hadoop.hbase.client.Table table;
@Override
protected void setup(Context context) throws IOException, InterruptedException {
Configuration config = HBaseConfiguration.create();
connection = ConnectionFactory.createConnection(config);
table = connection.getTable(TableName.valueOf("myTable"));
}
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split(",");
put = new Put(Bytes.toBytes(fields[0]));
put.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("column1"), Bytes.toBytes(fields[1]));
context.write(NullWritable.get(), put);
}
@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
table.close();
connection.close();
}
}
public static void main(String[] args) throws Exception {
Configuration config = HBaseConfiguration.create();
Job job = Job.getInstance(config, "Load Data to HBase");
job.setJarByClass(LoadDataToHBase.class);
job.setMapperClass(LoadDataMapper.class);
job.setOutputFormatClass(TableOutputFormat.class);
TableMapReduceUtil.addTableOutput(job, "myTable", null, null);
job.waitForCompletion(true);
}
}
步骤4:编写MapReduce作业来从HBase中进行数据筛查
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class HBaseScanMapper extends TableMapper<Text, Text> {
private ResultScanner scanner;
@Override
protected void setup(Context context) throws IOException, InterruptedException {
Configuration config = HBaseConfiguration.create();
Connection connection = ConnectionFactory.createConnection(config);
Admin admin = connection.getAdmin();
TableName tableName = TableName.valueOf("myTable");
Scan scan = new Scan();
scanner = admin.getScanner(tableName, scan);
}
@Override
protected void map(Text key, Text value, Context context) throws IOException, InterruptedException {
for (Result result : scanner) {
context.write(key, value);
}
}
@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
scanner.close();
}
}
public static class HBaseScanReducer extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
for (Text value : values) {
context.write(key, value);
}
}
}
public static void main(String[] args) throws Exception {
Configuration config = HBaseConfiguration.create();
Job job = Job.getInstance(config, "HBase Scan");
job.setJarByClass(HBaseScanReducer.class);
job.setMapperClass(HBaseScanMapper.class);
job.setReducerClass(HBaseScanReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
TableMapReduceUtil.addTableInput(job, "myTable", null, null);
job.waitForCompletion(true);
}
需要注意,以上代码仅作为示例,实际使用时需要根据具体需求进行调整。在运行这些作业之前,请确保Hadoop和HBase环境已经正确配置,并且有相应的权限。
(文章为作者在学习java过程中的一些个人体会总结和借鉴,如有不当、错误的地方,请各位大佬批评指正,定当努力改正,如有侵权请联系作者删帖。)