【LeetCode题目详解】第九章 动态规划part06 完全背的讲解 518. 零钱兑换 II 377. 组合总和 Ⅳ (day44补)

本文章代码以c++为例!

动态规划:完全背包理论基础

思路

# 完全背包

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题,所以我这里还是以纯完全背包问题进行讲解理论和原理。

在下面的讲解中,我依然举这个例子:

背包最大重量为4。

物品为:

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

每件商品都有无限个!

问背包能背的物品最大价值是多少?

01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!

关于01背包我如下两篇已经进行深入分析了:

首先再回顾一下01背包的核心代码

for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

至于为什么,我在动态规划:关于01背包问题,你该了解这些!(滚动数组)

(opens new window)中也做了讲解。

dp状态图如下:

动态规划-完全背包

相信很多同学看网上的文章,关于完全背包介绍基本就到为止了。

其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?

这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?

难道就不能遍历背包容量在外层,遍历物品在内层?

看过这两篇的话:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值