GPT 可以依据上下文回答问题,主要依据以下几个原理:
- Transformer 架构:
- 并行计算与长距离依赖处理:Transformer 架构摒弃了传统的递归神经网络和长短时记忆网络的序列依赖处理方式,具有并行计算的能力。它可以同时处理整个文本序列,大大提高了计算效率。并且通过自注意力机制和位置编码,能够有效地捕捉输入文本中的长距离依赖关系,即使是距离较远的词语之间的关系也能被很好地理解和处理。这为 GPT 理解上下文提供了强大的架构基础,无论上下文信息在文本中的位置有多远,模型都可以将其纳入考虑范围,从而更好地理解文本的整体语义。
- 自注意力机制:自注意力机制是 Transformer 架构的核心。该机制会根据输入文本中每个词与其他词的关联程度,为每个词分配不同的权重。在处理一个词时,模型会自动关注到文本中与其相关的其他部分,以此确定该词在当前语境下的具体含义。例如,当模型处理“苹果”这个词时,如果上下文中提到了“吃”“水果”等相关词汇,那么模型会根据这些信息为“苹果”赋予更准确的语义理解。通过这种方式,GPT 能够充分理解文本中各个部分之间的关系,从而依据上下文进行准确的回答。
- 预训练:
- 大规模语料学习:GPT 在大规模的文本数据上进行了无监督的预训练。训练数据来源广泛,包括新闻文章、小说、学术论文、社交媒体等各种文本。在预训练过程中,模型不断学习文本中的语言模式、语法结构、语义信息等知识,从而掌握了语言的通用规律和常见的表达方式。当遇到新的输入文本时,模型可以利用之前学习到的知识来理解上下文,并生成相应的回答。例如,如果在训练数据中经常出现“在公园里,人们喜欢散步和遛狗”这样的句子,那么当模型遇到类似“在公园里,人们还喜欢做什么?”的问题时,就可以根据之前学习到的上下文信息回答“遛狗”等相关内容。
- 语言模型任务:在预训练阶段,GPT 采用语言模型任务进行训练,即根据给定的上