离散化及其在 Pandas 中的实现方法

目录

1.什么是离散化?

2.离散化类型

3.示例代码

3.1连续变量离散化

3.2定性变量离散化

4.运行结果

4.1连续变量离散化

4.2定性变量离散化


1.什么是离散化?

        离散化是将连续数据或分类数据转换为离散类别的过程,方便后续的数据分析和机器学习建模。

2.离散化类型

  1. 连续变量离散化:
    • 定义:将连续的数值数据(例如年龄、收入、温度等)转换为离散的区间或类别。
    • 方法:使用区间划分,将连续的数据分割成几个区间,并赋予每个区间一个标签或编码。
    • 示例:将年龄数据分为“年轻”(18-29岁)、“中年”(30-40岁)、“老年”(41-50岁)。
  2. 定性变量离散化(分类编码):
    • 定义:将定性(分类)变量(例如性别、颜色、品牌等)转换为数值型或二进制型变量。
    • 方法:将每个类别转换为一个唯一的数值标签(数值编码)或多个二进制变量(独热编码)。
    • 示例:将水果名称转换为数值编码(apple = 0, banana = 1, cherry = 2)或独热编码(apple = [1, 0, 0], banana = [0, 1, 0], cherry = [0, 0, 1])。

3.示例代码

3.1连续变量离散化

        等宽分箱(Equal-width binning)是一种将连续变量离散化的方法。它将数据范围分成宽度相等的区间(也称为“”)。每个区间包含的数据点数量可能不同,但每个区间的宽度是相同的。

将年龄数据划分为几个年龄段:

import pandas as pd

# 创建 DataFrame
data = {'age': [22, 25, 47, 35, 46, 50, 18, 21, 30, 19]}
df =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值