【缺陷识别】SVM金属表面缺陷分类与测量(带面板)【含GUI Matlab源码 1652期】

本文介绍了一种金属表面缺陷检测的MATLAB实现,包括图像处理、阈值分割、特征提取和SVM分类。通过GUI,用户可以导入图片并检测三种缺陷:表面斑点、轧入氧化皮和划痕。代码提供了图像增强、滤波、霍夫变换等关键算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

⛄一、简介(附lunwen、答辩PPT)

1 题目内容
金属板广泛应用在工业生产与生产生活的各方面。由于金属板制造过程涉及到的设备、工艺等多因素的影响,金属板表面容易出现种类较多、形态各异的缺陷,这些缺陷对金属板的耐磨性、抗腐蚀性、电磁特性及美观性都会造成不同程度的影响,最终影响金属板的电磁特性和涂镀效果。因此对于生产金属板的企业来说,表面缺陷检测是必不可少的一个工序,一方面可以通过表面缺陷检测及时检测到缺陷产品,保证所产金属板的质量,维护企业的信誉,另一方面也可以通过分析检测结果及时发现生产过程中存在的问题,并及时解决[1]。我们将依据网上提供的金属表面缺陷照片数据集为图片来源,构造相应的算法对金属表面的缺陷进行检测,识别,分类与大小测量。
1.2题目要求
金属表面缺陷识别与分类有以下具体要求:
(1)依据金属表面缺陷图片的特性,对图片进行适当的灰度变换(对比度增强与滤波处理);
(2)对金属表面缺陷图片进行全局优化阈值分割;
(3)提取二值图片区域边界坐标;
(4)对金属缺陷进行特征提取;
(5)对金属缺陷进行分类有监督训练;
(6)完成对金属缺陷类型的判断与位置大小的计算;
(7)完成金属缺陷检测的GUI设计。
2 题目分析
我们查阅相关资料了解到常见的金属表面缺陷主要有如下几种,其分别是:细

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值