1. 概述
桶排序(Bucket Sort)又称箱排序,是一种比较常用的排序算法。其算法原理是将数组分到有限数量的桶里,再对每个桶分别排好序(可以是递归使用桶排序,也可以是使用其他排序算法将每个桶分别排好序),最后一次将每个桶中排好序的数输出。
2. 算法详解
桶排序的思想就是把待排序的数尽量均匀地放到各个桶中,再对各个桶进行局部的排序,最后再按序将各个桶中的数输出,即可得到排好序的数。
1.首先确定桶的个数。因为桶排序最好是将数据均匀地分散在各个桶中,那么桶的个数最好是应该根据数据的分散情况来确定。首先找出所有数据中的最大值mx和最小值mn;
根据mx和mn确定每个桶所装的数据的范围 size,有
size = (mx - mn) / n + 1,n为数据的个数,需要保证至少有一个数,故而需要加个1;
求得了size即知道了每个桶所装数据的范围,有
cnt = (mx - mn) / size + 1,需要保证最少有1个桶,故而需要加个1;
2.求得了size
和cnt
后,即可知第一个桶装的数据范围为 [mn, mn + size),第二个桶为 [mn + size, mn + 2 * size),…,以此类推因此步骤2中需要再扫描一遍数组,将待排序的各个数放进对应的桶中。
3.对各个桶中的数据进行排序,可以使用其他的排序算法排序,例如快速排序;也可以递归使用桶排序进行排序;
4.将各个桶中排好序的数据依次输出,最后得到的数据即为最终有序。
eg:
例如,待排序的数为:3, 6, 9, 1
1)求得 mx = 9,mn = 1,n = 4
size = (9 - 1) / n + 1 = 3
cnt = (mx - mn) / size + 1 = 3
2)由上面的步骤可知,共3个桶,每个桶能放3个数,第一个桶数的范围为 [1, 4),第二个[4, 7),第三个[7, 10)
扫描一遍待排序的数,将各个数放到其对应的桶中,放完后如下图所示:
代码测试:
#include <iostream>
#include <vector>
using namespace std;
class BucketSort {
public:
void bucketSort(vector<int> &nums) {
int n = nums.size();
int mn = nums[0], mx = nums[0];
for (int i = 1; i < n; i++) {
mn = min(mn, nums[i]);
mx = max(mx, nums[i]);
}
int size = (mx - mn) / n + 1; // 桶的个数,size 至少要为1
int cnt = (mx - mn) / size + 1; // 桶中的数据个数,至少为1
vector<vector<int>> buckets(cnt);
for (int i = 0; i < n; i++) {
int idx = (nums[i] - mn) / size;
buckets[idx].push_back(nums[i]);
}
for (int i = 0; i < cnt; i++) {
sort(buckets[i].begin(), buckets[i].end());
}
int index = 0;
for (int i = 0; i < cnt; i++) {
for (int j = 0; j < buckets[i].size(); j++) {
nums[index++] = buckets[i][j];
}
}
}
};
int main() {
vector<int> nums = {19, 27, 35, 43, 31, 22, 54, 66, 78};
BucketSort().bucketSort(nums);
for (auto num: nums) {
cout << num << " ";
}
cout << endl;
return 0;
}
3. 时间复杂度和空间复杂度分析
最好时间复杂度 : O(n + k)
其中k为桶的个数。即当数据是均匀分散排列的,那么每个桶分到的数据个数都是一样的,这个步骤需要O(k)的书剑复杂度,在对每个桶进行排序的时候,最好情况下是数据都已经是有序的了,那么最好的排序算法的时间复杂度会是O(n),因此总的时间复杂度是 O(n + k) 。
最坏时间复杂度:O(n^2)
当对每个桶中的数据进行排序的时候,所使用的排序算法,最坏情况下是O(n^2),因此总的最坏情况下的时间复杂度为O(n^2)。
平均时间复杂度:O(n + n²/k + k) <=> O(n)
如果k是根据Θ(n)来获取的,那么平均时间复杂度就是 O(n)。