硬投票:直接最终的结果的类别值进行“少数服从多数”策略
软投票:根据各自分类器的概率值进行加权平均
软投票相对于硬投票更好,但是需要各个分类器都可以得到概率值
'''自主构建数据集'''
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=500, noise=0.30, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
plt.plot(X[:, 0][y == 0], X[:, 1][y == 0], 'yo', alpha=0.6)
plt.plot(X[:, 0][y == 1], X[:, 1][y == 1], 'bs', alpha=0.6)
plt.show()
'''对比软投票与硬投票'''
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
log_clf = LogisticRegression(random_state=42)
rnd_cl