- Lucas-Kanade:LK算法
- calcOpticalFlowPyrLK:计算光流金字塔LK算法
1.视频读取
import numpy as np
import cv2
cap = cv2.VideoCapture('./test.avi')
2.第一帧图片、灰度化
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
3.图片角点检测
feature_params = dict(
maxCorners=100,
qualityLevel=0.3,
minDistance=7)
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)
4.mask掩码创建
mask = np.zeros_like(old_frame)
5.第二帧图片、灰度化
color = np.random.randint(0, 255, (100, 3))
while True:
ret, frame = cap.read()
if frame is None:
break
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
6.光流估计
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, gray, p0, None, winSize=(15, 15), maxLevel=2)
good_new = p1[st==1]
good_old = p0[st==1]
8.轨迹绘制
for i, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
mask = cv2.line(mask, (int(a), int(b)), (int(c), int(d)), color[i].tolist(), 2)
frame = cv2.circle(frame, (int(a), int(b)), 5, color[i].tolist(), -1)
cv2.imshow('frame', img)
key = cv2.waitKey(150)
if key == 27:
break
old_gray = gray.copy()
p0 = good_new.reshape(-1, 1, 2)
9.窗口摧毁、释放资源
for i, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
mask = cv2.line(mask, (int(a), int(b)), (int(c), int(d)), color[i].tolist(), 2)
frame = cv2.circle(frame, (int(a), int(b)), 5, color[i].tolist(), -1)
cv2.imshow('frame', img)
key = cv2.waitKey(150)
if key == 27:
break
old_gray = gray.copy()
p0 = good_new.reshape(-1, 1, 2)
