朴素贝叶斯的垃圾邮件分类

数据集:本次实验中,所采用的数据集为Enron Email Dataset。该数据集已经对正常邮件和垃圾邮件进行了分类。下载保存到本文件目录中。

代码实现过程:

1.导包

2.读入数据:读入了所有邮件内容和标签,其中邮件内容存储在data中,标签存储在target当中,“1”表示为垃圾邮件,“0”表示为正常邮件。

3.定义一个类对数据进行预处理

4.数据处理:①计算(对数)类先验,即计算P(垃圾邮件)和P(正常邮件);②词汇表(即正常邮件和垃圾邮件中出现的所有单词,方便进行拉普拉斯平滑);③垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。

5.定义一个类 SpamDetector对测试集进行测试

代码:

import os
import re
import string
import math
DATA_DIR = 'enron'
target_names = ['ham', 'spam']
def get_data(DATA_DIR):
    subfolders = ['enron%d' % i for i in range(1,7)]
    data = []
    target = []
    for subfolder in subfolders:
        # spam
        spam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))
        for spam_file in spam_files:
            with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:
                data.append(f.read())
                target.append(1)
        # ham
        ham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))
        for ham_file in ham_files:
            with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:
                data.append(f.read())
                target.append(0)
    return data, target
 
X, y = get_data(DATA_DIR)
 
class SpamDetector_1(object):
    """Implementation of Naive Bayes for binary classification"""
    #清除空格
    def clean(self, s):
        translator = str.m

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值