#以下定义的三个函数,分别用于不同类型的NumPy数组归一化处理
def maxminnorm(self, array):
"""
Numpy数组的归一化处理,把数据调到[0,1]
:param array: 需要归一化的数组
:return: 归一化后的数组
"""
maxcols = array.max(axis=0)# 计算每列最大值
mincols = array.min(axis=0)# 计算每列最小值
data_rows = array.shape[0]# 获取数据集的行数
data_cols = array.shape[1]# 获取数据集的列数
t = np.empty((data_rows, data_cols))# 创建一个空的NumPy数组用于存储归一化后的数据
for i in range(data_cols):# 遍历每一列
t[:, i] = (array[:, i] - mincols[i]) / (maxcols[i] - mincols[i])
return t
def meannorm(self, array):
"""
Numpy数组的归一化处理--Mean类型。把数据调到[-1,1],平均值为0
:param array: 需要归一化的数组
:return: 归一化后的数组
"""
maxcols = array.max(axis=0)
mincols = array.min(axis=0)
meancols = array.mean(axis=0)# 计算每列的平均数
data_rows = array.shape[0]
data_cols = array.shape[1]
t = np.empty((data_rows, data_cols))
for i in range(data_cols):
t[:, i] = (array[:, i] - meancols[i]) / (maxcols[i] - mincols[i])
return t
def zeronorm(self, array):
"""
Numpy数组的归一化处理--zero类型。把数据调到[-1,1],平均值为0
:param array: 需要归一化的数组
:return: 归一化后的数组
"""
std = array.std(axis=0)# 计算每列的平均差
mean = array.mean(axis=0)
data_rows = array.shape[0]
data_cols = array.shape[1]
t = np.empty((data_rows, data_cols))
for i in range(data_cols):
t[:, i] = (array[:, i] - mean[i]) / std[i]
return t


