Matplotlib和Seaborn数据可视化

目录

Matplotlib图表绘制

准备工作

折线图line

柱状图bar

水平条形图barh

饼图pie

散点图scatter

气泡图csatter

箱线图boxplot

直方图hist

蜂巢图hexbin

Seaborn图表绘制

准备数据

关系散点图scatterplot

关系散点线形图replot

分类散点图stripplot

分类小提琴图violinplot

分类平均值分布图barplot

分类技计数图countplot

矩形热力图heatmap

成对关系图pairplot


Matplotlib图表绘制

准备工作

import pandas as pd

anscombe = pd.read_csv('../data/e_anscombe.csv') # 资料中提供了这份数据
print(anscombe)

df1 = anscombe[anscombe['dataset']=='I']
df2 = anscombe[anscombe['dataset']=='II']
df3 = anscombe[anscombe['dataset']=='III']
df4 = anscombe[anscombe['dataset']=='IV']

折线图line

  • 折线图适用于时间序列数据分析、不同变量变化趋势比较、科学研究实验数据分析以及趋势预测和未来规划等多个场景。

df1.plot() # 默认折线图
#df1.plot(kind='line') # 结果与df1.plot()
#df1.plot.line() # 结果与df1.plot()
# x轴是索引值,y轴是各列的具体值
# 也可以通过参数指定xy轴对应的列名
df1.plot.line(x='x', y='y')
plt.show()

柱状图bar

  • 柱状图可应用于销售和市场分析、人口统计、学术研究、项目管理等场景,直观展示不同类别数据大小差异及分布情况,方便比较和分析。

df1.plot.bar() # 柱状图
df1.plot.bar(stacked=True) # 柱状堆积
# 也可以通过参数指定xy轴对应的列名
df1.plot.bar(x='x', y='y')
plt.show()

水平条形图barh

  • 条形柱状图适用于销售业绩对比、人口统计分布展示、学术研究成果呈现、项目进度管理等众多场景,以直观的方式展现不同类别数据的大小差异,便于比较和分析各类数据的分布情况。

df1.plot.barh() # 水平条形图
df1.plot.barh(stacked=True) # 水平条形堆积图
# 也可以通过参数指定xy轴对应的列名
df1.plot.barh(x='x', y='y')
plt.show()

饼图pie

  • 饼图主要应用于展示各部分占总体的比例关系,常见于市场份额分析、财务报表展示、人口构成统计等场景,能让人直观地看出不同部分在整体中的相对重要程度。

# 饼图,只能展示一维数据
# 参数y指定列名
# 参数autopct='%.2f%%'指定显示百分比 %.2f%%表示保留2位小数
# 参数radius=0.9 指定饼图直径的比例,最大为1
# 参数figsize=(16, 8) 设定图片大小
df1.plot.pie(y='x', autopct='%.2f%%', radius=0.9, figsize=(16, 8)) 
plt.show()

散点图scatter

  • 散点图适用于展示两个变量之间的关系,可用于科学研究中分析变量相关性、金融领域判断资产价格关系、市场调研中探索因素关联等场景。

# 指定xy轴,grid=True开启背景辅助线
df1.plot.scatter(x='x', y='y', grid=True)
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值