目录
主要内容
经典流体力学与OPENFOAM入门
一、经典流体力学
核心要点:
1、回顾经典流体力学理论,掌握NS方程的基本求解方法和模型
2、探索流体力学在工业领域的多元应用
3、运用开源软件OpenFOAM进行流体计算模拟的基本操作
4、流体力学求解模型认知(RNAS, LES)
实操环节:
1、OpenFOAM学习:
2、掌握OpenFOAM后处理操作
3、通过OpenFOAM获取流动信息
4、OpenFOAM多种功能使用教程:网络生成,模拟设置
5、基于OpenFOAM的矩形柱体LES模拟案例(数据与代码提供给学员)
6、OpenFOAM模拟信息的后处理获取流场与压力信息(数据与代码提供给学员)
计算流体动力学与人工智能
二、机器学习基础与应用
核心要点:
1、了解Python语言的特征,熟悉常见的机器学习算法
2、掌握使用python语言用于数据后处理
3、了解计算流体动力学与AI的结合
实操环节:
1、基于Python语言的CFD数据后处理(数据与代码提供给学员)
2、计算流体动力学与AI的结合案例讲解
三、时空超分辨率技术
核心知识点:
1、了解时空超分辨率技术的基本原理与应用
2、掌握人工智能技术在湍流时空超分辨率中的创新应用。
3、深入理解深度学习与湍流超分辨率的耦合机制。
实操环节:
1、基于深度学习的流场时序超分辨率处理(数据与代码提供给学员)
实验流体力学与人工智能
四、实验流体力学
核心知识点:
1、掌握实验流体力学的基础知识,了解相关实验设备。
2、了解机器学习技术在实验流体力学中的应用。
3、掌握Python语言进行实验数据的后处理,增强数据处理能力。
4、风洞试验
实操环节:
1、展示机器学习在实验流体力学领域的应用案例。
2、运用Python语言处理实验数据(数据与代码提供给学员)
五、人工智能与实验流体力学(流场部分)
核心知识点:
1、掌握实验流体力学数据处理的先进方法
2、了解并掌握DNN、CNN等常见深度学习技术在流场重构与预测中的应用。
实操环节:
1、基于人工智能技术的流场预测与重构方法
2、运用DNN技术进行流场预测(数据与代码提供给学员)
六、人工智能与实验流体力学(压力部分)
1、了解人工智能技术在压力预测预报的使用
2、理解融合物理知识的神经网络在误差控制项的使用
3、了解融合物理知识的神经网络(PINN)在流体力学的使用
实操环节:
1、基于人工智能技术的压力预测
2、融合物理限制(Physical constrain) 神经网络(PCNN)的时序压力预测(数据与代码提供给学员)
空气动力学与人工智能技术
七、空气动力学与人工智能技术
核心知识点:
1、了解爬虫技术在网页数据获取的方法,掌握从开源网站获取信息的技术
2、熟悉民航机翼空气动力学性能
3、掌握基于MLP的气动性能预测方法
实操环节:
4、基于爬虫技术的网页数据获取
5、基于深度学习的机翼气动性能预测
实践案例:基于多层感知机(MLP)的民航超临界机翼气动性能预测(数据与代码提供给学员)
深度强化学习学习在流体力学中的应用
八、深度强化学习(Deep Reinforcement Learning, DRL)
核心知识点:
1、掌握深度强化学习的主要框架
2、熟悉深度强化学习的常见算法及其应用场景。
3、理解深度强化学习中动作空间与观察空间的定义与应用。
4、理解代理模型(surrogate model)的概念与意义
实操环节:
5、构建融合物理限制(Physical constrain)的深度强化学习的环境空间(数据与代码提供给学员)
九、深度强化学习的工程实践
核心知识点:
6、掌握定义离散动作空间/连续动作空间的方法,提升算法设计能力
7、学习深度强化学习在工程领域的实际应用,增强解决复杂问题的能力
实操环节:
8、耦合代理模型的深度强化学习在民航飞机外形优化中的应用:
运用深度强化学习进行离散动作空间/连续动作空间的优化(数据与代码提供给学员)