将txt文件转换为xml文件(使用yolov4检测图像,并保存每一张图像 和 将图像上的每一个目标区域 坐标进行保存 方便放入到 labelimg 中显示效果)
import os
import xml.etree.ElementTree as ET
from xml.etree.ElementTree import Element, SubElement
from PIL import Image
class Xml_make(object):
def __init__(self):
super().__init__()
def __indent(self, elem, level=0):
i = "\n" + level * "\t"
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + "\t"
if not elem.tail or not elem.tail.strip():
elem.tail = i
for elem in elem:
self.__indent(elem, level + 1)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = i
def _imageinfo(self, list_top):
annotation_root = ET.Element('annotation')
annotation_root.set('verified', 'no')
tree = ET.ElementTree(annotation_root)
'''
0:xml_savepath 1:folder,2:filename,3:path
4:checked,5:width,6:height,7:depth
'''
folder_element = ET.Element('folder')
folder_element.text = list_top[1]
annotation_root.append(folder_element)
filename_element = ET.Element('filename')
filename_element.text = list_top[2]
annotation_root.append(filename_element)
path_element = ET.Element('path')
path_element.text = list_top[3]
annotation_root.append(path_element)
checked_element = ET.Element('checked')
checked_element.text = list_top[4]
annotation_root.append(checked_element)
source_element = ET.Element('source')
database_element = SubElement(source_element, 'database')
database_element.text = 'Unknown'
annotation_root.append(source_element)
size_element = ET.Element('size')
width_element = SubElement(size_element, 'width')
width_element.text = str(list_top[5])
height_element = SubElement(size_element, 'height')
height_element.text = str(list_top[6])
depth_element = SubElement(size_element, 'depth')
depth_element.text = str(list_top[7])
annotation_root.append(size_element)
segmented_person_element = ET.Element('segmented')
segmented_person_element.text = '0'
annotation_root.append(segmented_person_element)
return tree, annotation_root
def _bndbox(self, annotation_root, list_bndbox):
for i in range(0, len(list_bndbox), 9):
object_element = ET.Element('object')
name_element = SubElement(object_element, 'name')
name_element.text = list_bndbox[i]
flag_element = SubElement(object_element, 'flag')
flag_element.text = list_bndbox[i + 1]
pose_element = SubElement(object_element, 'pose')
pose_element.text = list_bndbox[i + 2]
truncated_element = SubElement(object_element, 'truncated')
truncated_element.text = list_bndbox[i + 3]
difficult_element = SubElement(object_element, 'difficult')
difficult_element.text = list_bndbox[i + 4]
bndbox_element = SubElement(object_element, 'bndbox')
xmin_element = SubElement(bndbox_element, 'xmin')
xmin_element.text = str(list_bndbox[i + 5])
ymin_element = SubElement(bndbox_element, 'ymin')
ymin_element.text = str(list_bndbox[i + 6])
xmax_element = SubElement(bndbox_element, 'xmax')
xmax_element.text = str(list_bndbox[i + 7])
ymax_element = SubElement(bndbox_element, 'ymax')
ymax_element.text = str(list_bndbox[i + 8])
annotation_root.append(object_element)
return annotation_root
def txt_to_xml(self, list_top, list_bndbox):
tree, annotation_root = self._imageinfo(list_top)
annotation_root = self._bndbox(annotation_root, list_bndbox)
self.__indent(annotation_root)
tree.write(list_top[0], encoding='utf-8', xml_declaration=True)
def txt_2_xml(source_path, xml_save_dir, txt_dir):
COUNT = 0
for folder_path_tuple, folder_name_list, file_name_list in os.walk(source_path):
for file_name in file_name_list:
file_suffix = os.path.splitext(file_name)[-1]
if file_suffix != '.jpg':
continue
list_top = []
list_bndbox = []
path = os.path.join(folder_path_tuple, file_name)
xml_save_path = os.path.join(xml_save_dir, file_name.replace(file_suffix, '.xml'))
txt_path = os.path.join(txt_dir, file_name.replace(file_suffix, '.txt'))
filename = os.path.splitext(file_name)[0]
checked = 'NO'
im = Image.open(path)
im_w = im.size[0]
im_h = im.size[1]
width = str(im_w)
height = str(im_h)
depth = '3'
flag = 'rectangle'
pose = 'Unspecified'
truncated = '0'
difficult = '0'
list_top.extend([xml_save_path, folder_path_tuple, filename, path, checked,
width, height, depth])
for line in open(txt_path, 'r'):
line = line.strip()
info = line.split(' ') #info为读取txt文件的内容
print("info",info)
name = info[0] # 是类别信息根据自己的需求进行更改
if name == "0":
name = "person"
elif name =="1":
name = "car"
x_cen = float(info[1]) * im_w
y_cen = float(info[2]) * im_h
w = float(info[3]) * im_w
h = float(info[4]) * im_h
xmin = int(x_cen - w / 2)
ymin = int(y_cen - h / 2)
xmax = int(x_cen + w / 2)
ymax = int(y_cen + h / 2)
list_bndbox.extend([name, flag, pose, truncated, difficult,
str(xmin), str(ymin), str(xmax), str(ymax)])
Xml_make().txt_to_xml(list_top, list_bndbox)
COUNT += 1
print(COUNT, xml_save_path)
if __name__ == '__main__': #图片和txt放入到不同文件夹
source_path = r"H:\pytorch\yolov4-pytorch-master\output\img" # txt标注文件所对应的的图片
xml_save_dir = r"H:\pytorch\yolov4-pytorch-master\output\xml" # 转换为xml标注文件的保存路径
txt_dir = r"H:\pytorch\yolov4-pytorch-master\output\txt" # 需要转换的txt标注文件
txt_2_xml(source_path, xml_save_dir, txt_dir)