一、附近商户-GEO数据结构的基本用法
GEO就是Geolocation的简写形式,代表地理坐标。Redis在3.2版本中加入了对GEO的支持,允许存储地理坐标信息,帮助我们根据经纬度来检索数据。常见的命令有:
-
GEOADD:添加一个地理空间信息,包含:经度(longitude)、纬度(latitude)、值(member)
-
GEODIST:计算指定的两个点之间的距离并返回
-
GEOHASH:将指定member的坐标转为hash字符串形式并返回
-
GEOPOS:返回指定member的坐标
-
GEORADIUS:指定圆心、半径,找到该圆内包含的所有member,并按照与圆心之间的距离排序后返回。6.以后已废弃
-
GEOSEARCH:在指定范围内搜索member,并按照与指定点之间的距离排序后返回。范围可以是圆形或矩形。6.2.新功能
-
GEOSEARCHSTORE:与GEOSEARCH功能一致,不过可以把结果存储到一个指定的key。 6.2.新功能
1. GEOADD
功能:将一个或多个地理空间信息(经度、纬度和成员名称)添加到指定的键中。
语法:
GEOADD key [NX | XX] [CH] longitude latitude member [longitude latitude member ...]
参数说明:
-
key
:存储地理空间数据的键。 -
NX
(可选):仅在成员不存在时添加。 -
XX
(可选):仅在成员已存在时更新位置。 -
CH
(可选):返回被修改成员的数量,包括添加和更新。 -
longitude
:经度,范围为[-180, 180]。 -
latitude
:纬度,范围为[-90, 90]。 -
member
:成员名称,可以是字符串或数字。
返回值:返回添加或修改的成员数量。
2. GEODIST
功能:计算两个成员之间的距离。
语法:
GEODIST key member1 member2 [unit]
参数说明:
-
key
:存储地理空间数据的键。 -
member1
和member2
:需要计算距离的两个成员名称。 -
unit
(可选):距离单位,默认为米(m
),可选单位还包括千米(km
)、英里(mi
)和英尺(ft
)。
返回值:返回两个成员之间的距离,如果任一成员不存在,则返回nil
。
3. GEOHASH
功能:将指定成员的地理坐标转换为Geohash字符串。
语法:
GEOHASH key [member [member ...]]
参数说明:
-
key
:存储地理空间数据的键。 -
member
:一个或多个成员名称。
返回值:返回每个成员的Geohash字符串,如果成员不存在,则返回nil
。
4. GEOPOS
功能:获取指定成员的地理坐标(经度和纬度)。
语法:
GEOPOS key [member [member ...]]
参数说明:
-
key
:存储地理空间数据的键。 -
member
:一个或多个成员名称。
返回值:返回每个成员的经纬度坐标,格式为[经度, 纬度]
,如果成员不存在,则返回nil
。
5. GEORADIUS(已废弃)
功能:根据指定的经纬度和半径,查找范围内的所有成员。
语法:
GEORADIUS key longitude latitude radius unit [WITHCOORD] [WITHDIST] [WITHHASH] [COUNT count] [ASC|DESC]
参数说明:
-
key
:存储地理空间数据的键。 -
longitude
和latitude
:中心点的经度和纬度。 -
radius
:搜索半径。 -
unit
:距离单位,可选值为m
、km
、ft
、mi
。 -
WITHCOORD
:返回成员的坐标。 -
WITHDIST
:返回成员与中心点的距离。 -
WITHHASH
:返回成员的Geohash值。 -
COUNT count
:限制返回的成员数量。 -
ASC
或DESC
:按距离升序或降序排列。
返回值:返回范围内的成员列表,可选返回成员的坐标、距离和Geohash值。
6. GEOSEARCH(新功能)
功能:在指定范围内搜索成员,支持圆形和矩形区域。
语法:
GEOSEARCH key <FROMMEMBER member | FROMLONLAT longitude latitude>
<BYRADIUS radius <unit> | BYBOX width height <unit>> [ASC | DESC] [COUNT count [ANY]] [WITHCOORD] [WITHDIST] [WITHHASH]
参数说明:
-
key
:存储地理空间数据的键。 -
FROMMEMBER
:以指定成员的位置作为中心点。 -
FROMLONLAT
:以指定的经纬度作为中心点。 -
BYRADIUS
:在圆形区域内搜索,指定半径和单位。 -
BYBOX
:在矩形区域内搜索,指定宽度和高度以及单位。 -
ASC
或DESC
:按距离升序或降序排列。 -
COUNT count
:限制返回的成员数量。 -
WITHCOORD
、WITHDIST
、WITHHASH
:返回成员的坐标、距离和Geohash值。
返回值:返回范围内的成员列表,可选返回成员的坐标、距离和Geohash值。
7. GEOSEARCHSTORE(新功能)
功能:与GEOSEARCH
功能一致,但可以将结果存储到指定的键中。
语法:
GEOSEARCHSTORE destination source <FROMMEMBER member | FROMLONLAT longitude latitude>
<BYRADIUS radius <unit> | BYBOX width height <unit>> [ASC | DESC] [COUNT count [ANY]] [STOREDIST]
参数说明:
-
destination
:存储结果的目标键。 -
source
:源键,存储地理空间数据的键。 -
其余参数与
GEOSEARCH
相同。 -
STOREDIST
:将成员与中心点的距离存储为目标键的分数。
返回值:返回结果集中的成员数量。
二、附近商户-导入店铺数据到GEO
具体场景说明:
当我们点击美食之后,会出现一系列的商家,商家中可以按照多种排序方式,我们此时关注的是距离,这个地方就需要使用到我们的GEO,向后台传入当前app收集的地址(我们此处是写死的) ,以当前坐标作为圆心,同时绑定相同的店家类型type,以及分页信息,把这几个条件传入后台,后台查询出对应的数据再返回。
我们要做的事情是:将数据库表中的数据导入到redis中去,redis中的GEO,GEO在redis中就一个menber和一个经纬度,我们把x和y轴传入到redis做的经纬度位置去,但我们不能把所有的数据都放入到menber中去,毕竟作为redis是一个内存级数据库,如果存海量数据,redis还是力不从心,所以我们在这个地方存储他的id即可。
但是这个时候还有一个问题,就是在redis中并没有存储type,所以我们无法根据type来对数据进行筛选,所以我们可以按照商户类型做分组,类型相同的商户作为同一组,以typeId为key存入同一个GEO集合中即可
代码
HmDianPingApplicationTests
@Test
void loadShopData() {
// 1.查询店铺信息
List<Shop> list = shopService.list();
// 2.把店铺分组,按照typeId分组,typeId一致的放到一个集合
Map<Long, List<Shop>> map = list.stream().collect(Collectors.groupingBy(Shop::getTypeId));
// 3.分批完成写入Redis
for (Map.Entry<Long, List<Shop>> entry : map.entrySet()) {
// 3.1.获取类型id
Long typeId = entry.getKey();
String key = SHOP_GEO_KEY + typeId;
// 3.2.获取同类型的店铺的集合
List<Shop> value = entry.getValue();
List<RedisGeoCommands.GeoLocation<String>> locations = new ArrayList<>(value.size());
// 3.3.写入redis GEOADD key 经度 纬度 member
for (Shop shop : value) {
// stringRedisTemplate.opsForGeo().add(key, new Point(shop.getX(), shop.getY()), shop.getId().toString());
locations.add(new RedisGeoCommands.GeoLocation<>(
shop.getId().toString(),
new Point(shop.getX(), shop.getY())
));
}
stringRedisTemplate.opsForGeo().add(key, locations);
}
}
三、附近商户-实现附近商户功能
SpringDataRedis的2.3.9版本并不支持Redis 6.2提供的GEOSEARCH命令,因此我们需要提示其版本,修改自己的POM
第一步:导入pom
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
<exclusions>
<exclusion>
<artifactId>spring-data-redis</artifactId>
<groupId>org.springframework.data</groupId>
</exclusion>
<exclusion>
<artifactId>lettuce-core</artifactId>
<groupId>io.lettuce</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactId>
<version>2.6.2</version>
</dependency>
<dependency>
<groupId>io.lettuce</groupId>
<artifactId>lettuce-core</artifactId>
<version>6.1.6.RELEASE</version>
</dependency>
第二步:
ShopController
@GetMapping("/of/type")
public Result queryShopByType(
@RequestParam("typeId") Integer typeId,
@RequestParam(value = "current", defaultValue = "1") Integer current,
@RequestParam(value = "x", required = false) Double x,
@RequestParam(value = "y", required = false) Double y
) {
return shopService.queryShopByType(typeId, current, x, y);
}
ShopServiceImpl
@Override
public Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {
// 1.判断是否需要根据坐标查询
if (x == null || y == null) {
// 不需要坐标查询,按数据库查询
Page<Shop> page = query()
.eq("type_id", typeId)
.page(new Page<>(current, SystemConstants.DEFAULT_PAGE_SIZE));
// 返回数据
return Result.ok(page.getRecords());
}
// 2.计算分页参数
int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;
int end = current * SystemConstants.DEFAULT_PAGE_SIZE;
// 3.查询redis、按照距离排序、分页。结果:shopId、distance
String key = SHOP_GEO_KEY + typeId;
GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo() // GEOSEARCH key BYLONLAT x y BYRADIUS 10 WITHDISTANCE
.search(
key,
GeoReference.fromCoordinate(x, y),
new Distance(5000),
RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end)
);
// 4.解析出id
if (results == null) {
return Result.ok(Collections.emptyList());
}
List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();
if (list.size() <= from) {
// 没有下一页了,结束
return Result.ok(Collections.emptyList());
}
// 4.1.截取 from ~ end的部分
List<Long> ids = new ArrayList<>(list.size());
Map<String, Distance> distanceMap = new HashMap<>(list.size());
list.stream().skip(from).forEach(result -> {
// 4.2.获取店铺id
String shopIdStr = result.getContent().getName();
ids.add(Long.valueOf(shopIdStr));
// 4.3.获取距离
Distance distance = result.getDistance();
distanceMap.put(shopIdStr, distance);
});
// 5.根据id查询Shop
String idStr = StrUtil.join(",", ids);
List<Shop> shops = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();
for (Shop shop : shops) {
shop.setDistance(distanceMap.get(shop.getId().toString()).getValue());
}
// 6.返回
return Result.ok(shops);
}