前言
Transformer的起源:Google Brain 翻译团队通过论文《Attention is all you need》提出了一种全新的简单网络架构——Transformer,它完全基于注意力机制,摒弃了循环和卷积操作。
正如论文标题所言“注意力机制是全部所需”,强调了注意力机制是Transformer架构的核心要素,就如同人的心脏一样,充当着发动机的作用。
那么单头注意力和多头注意力到底是什么?它们两者有哪些联系和区别?让我们一起跟着动画来解读吧。
单头注意力:通过生成查询、键和值向量,计算并归一化注意力分数,最终对值向量进行加权求和,从而得到输入序列中每个位置的加权表示。
单头注意力机制的工作流程如下:
-
生成查询、键和值:接收一个由嵌入向量组成的输入序列。使用三个不同的线性变换(或称为全连接层)将输入序列分别映射为查询(Q)、键(K)和值(V)向量。
-
计算注意力分数:计算查询向量与所有