【Hive-优化】Hive的优化方式三(索引优化)
简介:
Hive支持索引,但是Hive的索引与关系型数据库中的索引并不相同,比如,Hive不支持主键或者外键。
Hive索引可以建立在表中的某些列上,以提升一些操作的效率,例如减少MapReduce任务中需要读取的数据块的数量。
在可以预见到分区数据非常庞大的情况下,分桶和索引常常是优于分区的。而分桶由于SMB Join对关联键要求严格,所以并不是总能生效。
1)Hive原始索引
Hive的索引目的是提高Hive表指定列`的查询速度。
没有索引时,类似‘WHERE tab1.col1 = 10’的查询,Hive会加载整张表或分区,然后处理所有的rows,但是如果在字段col1上面存在索引时,那么只会加载和处理文件的一部分。
在每次建立、更新数据后,Hive索引不会自动更新,需要手动进行更新(重建索引以构建索引表),会触发一个mr job
Hive索引使用过程繁杂,而且性能一般,在Hive3.0中已被删除,在工作环境中不推荐优先使用,在分区数量过多或查询字段不是分区字段时,索引可以作为补充方案同时使用。推荐使用ORC文件格式的索引类型进行查询。
2)Row Group Index
一个ORC文件包含一个或多个stripes(groups of row data),每个stripe中包含了每个column的min/max值的索引数据,当查询中有<,>,=的操作时,会根据min/max值,跳过扫描不包含的stripes。
而其中为每个stripe建立的包含min/max值的索引,就称为