POJ 3159 Candies(差分约束、dij堆优化)
Solution
差分约束好题
x B − x A ≤ c x_B - x_A \leq c xB−xA≤c 可以变为: x B ≤ c + x A x_B \leq c + x_A xB≤c+xA
因此,我们可以建一条 A 到 B 的边,题目求 x n − x 1 x_n - x_1 xn−x1 的最大值,即求从 x 1 x_1 x1 到 x n x_n xn 的最短路。
代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<cmath>
#include<string>
#include<queue>
#include<set>
//#define int long long
using namespace std;
typedef pair<int, int> pii;
typedef double dd;
typedef long long ll;
const int MAXN = 30010;
const int MAXM = 150010;
const dd eps = 1e-6;
const int inf = 0x3f3f3f3f;
struct TY{
int v, w, nxt;
} e[MAXM];
int n, m;
int dis[MAXN], head[MAXN], cnt;
bool vis[MAXN];
void add(int u,int v,int w){
e[++cnt].v = v, e[cnt].w = w, e[cnt].nxt = head[u], head[u] = cnt;
}
void dij()
{
memset(dis, 0x3f, sizeof(dis));
dis[1] = 0;
priority_queue<pii, vector<pii>, greater<pii>> q;
q.push(pii(0, 1));
while(q.size())
{
int u = q.top().second;
q.pop();
if(vis[u])
continue;
vis[u] = 1;
for (int i = head[u]; i;i=e[i].nxt)
{
int v = e[i].v, w = e[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
q.push(pii(dis[v], v));
}
}
}
}
int main()
{
//cin >> n >> m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= m;i++)
{
int u, v, w;
//cin >> u >> v >> w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
}
dij();
printf("%d\n", dis[n]);
}