构造哈夫曼树(C语言)

哈夫曼树又称最优树,即带权路径长度最小的二叉树。

构造过程是典型的贪心算法,即每一步都求取最优情况使整体情况也达到最优。所以构造哈夫曼树时,应该让权重小的结点放在靠下的位置让权重大的放在较上的位置。

代码:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define N 30     //叶子结点最大值
#define M 2*N-1  //所有结点最大值

typedef struct
{
	int flag;
	int weight;
	int parent, LChild, RChild;
}HTNode, HuffmanTree[M + 1]; //0号单元不用

void Select(HuffmanTree ht, int tmp, int* s1, int* s2);//找到ht中权值最小的两个结点
void CreateHuffman(HuffmanTree ht, int w[], int n);   //构建哈夫曼树ht[M+1],w[]存放n个权值
void PrintHuffman(HuffmanTree ht, int m);             //打印哈夫曼树


int main()
{
	int n; //n个权值
	scanf("%d", &n);
	int *w;
	w = (int*)malloc(sizeof(int) * (n+1));
	if (w == NULL) {
		return 0;
	}
	for (int i = 1; i <= n; i++) {
		scanf("%d", &w[i]);
	}
	HuffmanTree ht;
	CreateHuffman(ht, w, n);
	PrintHuffman(ht, 2 * n - 1);
	return 0;
}

void Select(HuffmanTree ht, int n, int* s1, int* s2)
{   //找到ht中权值最小的两个结点
	int min = 0, tmp;
	for (int i = 1; i <= n; i++) {
	//找一个没有父节点的结点
		if (ht[i].parent == 0) {
			min = i;
			tmp = ht[i].weight;
			break;
		}
	}
	for (int i = 1; i <= n; i++) {
		if (ht[i].parent == 0 && ht[i].weight < tmp) {
			min = i;
			tmp = ht[i].weight;
		}
	}
	*s1 = min;
	ht[min].parent = -1;
	for (int i = 1; i <= n; i++) {
	//找一个没有父节点的结点
		if (ht[i].parent == 0) {
			min = i;
			tmp = ht[i].weight;
			break;
		}
	}
	for (int i = 1; i <= n; i++) {
		if (ht[i].parent == 0 && ht[i].weight < tmp) {
			min = i;
			tmp = ht[i].weight;
		}
	}
	*s2 = min;
}

void CreateHuffman(HuffmanTree ht, int w[], int n)
{   //构建哈夫曼树ht[M+1],w[]存放n个权值
	ht[0].flag = 0;
	for (int i = 1; i <= n; i++) {
	//将前n项初始化
		ht[i].flag = ht[i - 1].flag + 1;
		ht[i].weight = w[i];
		ht[i].parent = 0;
		ht[i].LChild = 0;
		ht[i].RChild = 0;
	}
	int m = 2 * n - 1;
	for (int i = n + 1; i <= m; i++) {
	//将n+1项到m项初始化
		ht[i].flag = ht[i - 1].flag + 1;
		ht[i].weight = 0;
		ht[i].parent = 0;
		ht[i].LChild = 0;
		ht[i].RChild = 0;
	}
	int s1, s2;
	for (int i = n + 1; i <= m; i++) {
	//开始构造
		Select(ht, i-1, &s1, &s2);
		ht[i].weight = ht[s1].weight + ht[s2].weight;
		ht[i].LChild = s1;
		ht[i].RChild = s2;
		ht[s1].parent = i;
		ht[s2].parent = i;
	}
}

void PrintHuffman(HuffmanTree ht, int m)
{   //打印哈夫曼树
	printf("结点\tweight\tparent\tLChild\tRChlid");
	for (int i = 1; i <= m; i++) {
		printf("\n%d\t%d\t%d\t%d\t%d",ht[i].flag, ht[i].weight, ht[i].parent, ht[i].LChild, ht[i].RChild);
	}
}
哈夫曼是一种特殊的二叉树,它的每个叶子节点都对应一个字符,并且每个字符的权值(即出现频率)越高,它在哈夫曼中距离根节点越近。构造哈夫曼的基本思路是:首先将所有字符按照权值从小到大排序,然后选取权值最小的两个字符,将它们作为左右子节点构造一棵二叉树,它的根节点的权值为两个子节点的权值之和。接着将新的二叉树插入到原来的字符集合中,再次排序,重复以上步骤,直到只剩下一棵二叉树,即为所求的哈夫曼。 以下是C语言实现哈夫曼的代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> typedef struct node { char ch; int freq; struct node* left; struct node* right; } Node; typedef struct list { Node* node; struct list* next; } List; List* create_list(char ch, int freq) { List* list = (List*) malloc(sizeof(List)); list->node = (Node*) malloc(sizeof(Node)); list->node->ch = ch; list->node->freq = freq; list->node->left = NULL; list->node->right = NULL; list->next = NULL; return list; } List* add_list(List* list, char ch, int freq) { if (list == NULL) { return create_list(ch, freq); } List* tmp = list; while (tmp->next != NULL) { tmp = tmp->next; } tmp->next = create_list(ch, freq); return list; } List* remove_list(List* list, List* node) { if (list == node) { list = list->next; free(node->node); free(node); return list; } List* tmp = list; while (tmp->next != node) { tmp = tmp->next; } tmp->next = node->next; free(node->node); free(node); return list; } Node* create_huffman_tree(List* list) { while (list->next != NULL) { List* node1 = list; List* node2 = list->next; list = remove_list(list, node1); list = remove_list(list, node2); Node* node = (Node*) malloc(sizeof(Node)); node->ch = '\0'; node->freq = node1->node->freq + node2->node->freq; node->left = node1->node; node->right = node2->node; list = add_list(list, '\0', node->freq); list->node = node; } return list->node; } void print_huffman_tree(Node* node) { if (node == NULL) { return; } printf("%c:%d\n", node->ch, node->freq); print_huffman_tree(node->left); print_huffman_tree(node->right); } int main() { List* list = NULL; list = add_list(list, 'a', 5); list = add_list(list, 'b', 9); list = add_list(list, 'c', 12); list = add_list(list, 'd', 13); list = add_list(list, 'e', 16); list = add_list(list, 'f', 45); Node* node = create_huffman_tree(list); print_huffman_tree(node); return 0; } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值