Chapter3: Chemical Topic Modeling - An Unsupervised Approach Originating from Text-mining

reading notes of《Artificial Intelligence in Drug Discovery》


1.Introduction

  • In chemistry, we tend to describe large sets of molecules using the types of compounds it contains, e.g. peptides. Being able to automatically organize sets of molecules in a similar way would allow chemists to more naturally explore and retrieve information and knowledge from those sets.

2.Topic Modeling and LDA

  • There exist several mathematical and algorithmic frameworks for constructing such topic models. They usually share the common idea that the data was generated in a context and that information about the context is latently present in the data. When provided with enough data the most common contexts can be reconstructed.
  • Latent Dirichlet Allocation

剩下的内容以后再看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_森罗万象

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值