概率图模型--因子图

概率图模型–因子图 – 潘登同学的Machine Learning笔记

简单回顾概率图模型

概率图就是概率论+图论;

最大的贡献就是联合概率分布可以表示为局部势函数的连乘积;

回顾贝叶斯网络

贝叶斯网络

将联合概率分布可以表示为局部势函数的联乘积

P ( S , C , X , B , D ) = P ( S ) P ( C ∣ S ) P ( B ∣ S ) P ( X ∣ C , S ) P ( D ∣ C , B ) P(S,C,X,B,D) = P(S)P(C|S)P(B|S)P(X|C,S)P(D|C,B) P(S,C,X,B,D)=P(S)P(CS)P(BS)P(XC,S)P(DC,B)

简单回顾马尔可夫随机场(MRF)

A
D
B
C

P ( A , B , C , D ) = 1 Z ϕ ∏ i = 1 k ϕ i ( D i ) = 1 Z ϕ ϕ 1 ( A , B ) ϕ 2 ( B , C ) ϕ 3 ( C , D ) ϕ 4 ( D , A ) \begin{aligned} P(A,B,C,D) &= \frac{1}{Z_{\phi}}\prod_{i=1}^{k}\phi_i(D_i) \\ &= \frac{1}{Z_{\phi}}\phi_1(A,B)\phi_2(B,C)\phi_3(C,D)\phi_4(D,A) \\ \end{aligned} P(A,B,C,D)=Zϕ1i=1kϕi(Di)=Zϕ1ϕ1(A,B)ϕ2(B,C)ϕ3(C,D)ϕ4(D,A)

因子图

因子图其实是上面这些概率图模型的一个统一表述;

因子图

  • 因子图是一个二部图, 一边是变量 x x x, 一边是因子 f f f;

变量就是自变量; 因子就可以理解为势函数, 也就是参数;

  • 定义

因子图是一类无向概率图模型, 包括变量节点和因子节点。 变量节点和因子节点之间有无向边连接。 与某个因子节点相连的变量节点, 为该因子的变量。 定义在因子图上的联合概率分布可以表示为各个因子的联乘积;

看! 又是联乘积了对叭…

  • 用各个因子的联乘积表示上图
    p ( x ) = 1 Z ϕ ∏ A f A ( x A ) p(x) = \frac{1}{Z_{\phi}}\prod_{A}f_A(x_A) p(x)=Zϕ1AfA(xA)
    具体来说,
    p ( x 1 , x 2 , x 3 ) = 1 Z ϕ f a ( x 1 , x 2 ) f b ( x 1 , x 2 ) f c ( x 2 , x 3 ) f d ( x 3 ) p(x_1, x_2, x_3) = \frac{1}{Z_{\phi}}f_{a}(x_1, x_2)f_{b}(x_1, x_2)f_{c}(x_2, x_3)f_{d}(x_3) p(x1,x2,x3)=Zϕ1fa(x1,x2)fb(x1,x2)fc(x2,x3)fd(x3)

将贝叶斯网络用因子图表示

贝叶斯网络

将贝叶斯网络用因子图表示,如下:

因子图的图

  • 数学表示:
    P ( S , C , B , D , X ) = f S ( S ) f C ( S , C ) f B ( S , B ) f X ( S , C , X ) f D ( C , B , D ) P(S,C,B,D,X) = f_S(S)f_C(S,C)f_B(S,B)f_X(S,C,X)f_D(C,B,D) P(S,C,B,D,X)=fS(S)fC(S,C)fB(S,B)fX(S,C,X)fD(C,B,D)

  • 再来看看原本贝叶斯网络的数学表示

P ( S , C , X , B , D ) = P ( S ) P ( C ∣ S ) P ( B ∣ S ) P ( X ∣ C , S ) P ( D ∣ C , B ) P(S,C,X,B,D) = P(S)P(C|S)P(B|S)P(X|C,S)P(D|C,B) P(S,C,X,B,D)=P(S)P(CS)P(BS)P(XC,S)P(DC,B)

其实他俩一样对吧; 但是关键点就是这个P(S)

一般的P(S)我们就单纯的把他理解发生某件事为概率,如
P 明 天 下 雨 = 0.6 ; ∴ P 明 天 下 雨 = 0.4 P_{明天下雨} = 0.6; \therefore P_{明天下雨} = 0.4 P=0.6;P=0.4

但是因子图, 把这样的概率表示成了因子节点, 所以整个因子图就把输入变量和因子节点分隔开, 这样虽然本质不变, 但是便于目标的求解;

将马尔科夫随机场用因子图表示

A
D
B
C
  • 表示如下:

MRF因子图的图

可以看到, 因子图的一组节点是输入变量, 另一组节点是原本的边, (也可以理解为对原图的所有边都做了一个细分同构)

其实就是把原本MRF的边当做了一些新的节点, 而MRF的边的含义就是势函数, 所以因子图把势函数当做了一些新的节点, 就把输入变量与势函数分隔开了;

  • MRF的细分同构

(就是在原本边上加了一个节点)

A
f_B
f_A
B
f_D
D
f_C
C

可以看出这个图跟上面二部图其实是一样的, 只是视觉问题而已;

  • 数学表示:
    P ( A , B , C , D ) = 1 Z f 1 ( A , B ) f 2 ( B , C ) f 3 ( C , D ) f 4 ( D , A ) P(A,B,C,D) = \frac{1}{Z}f_1(A,B)f_2(B,C)f_3(C,D)f_4(D,A) P(A,B,C,D)=Z1f1(A,B)f2(B,C)f3(C,D)f4(D,A)

  • 再来看看原本MRF的数学表示
    P ( A , B , C , D ) = 1 Z ϕ ∏ i = 1 k ϕ i ( D i ) = 1 Z ϕ ϕ 1 ( A , B ) ϕ 2 ( B , C ) ϕ 3 ( C , D ) ϕ 4 ( D , A ) \begin{aligned} P(A,B,C,D) &= \frac{1}{Z_{\phi}}\prod_{i=1}^{k}\phi_i(D_i) \\ &= \frac{1}{Z_{\phi}}\phi_1(A,B)\phi_2(B,C)\phi_3(C,D)\phi_4(D,A) \\ \end{aligned} P(A,B,C,D)=Zϕ1i=1kϕi(Di)=Zϕ1ϕ1(A,B)ϕ2(B,C)ϕ3(C,D)ϕ4(D,A)

其实他俩没啥区别吧, 所以因子图就是一个大一统的模型吧, 方便求解;

但其实也能看出他的一个缺点, 就是没有贝叶斯网络和MRF那样直观, 贝叶斯网络与MRF的因果关系都很显然, 但因子图借用了二部图会难以看出因果关系;

总结

联合概率分布的因子分解是概率图模型表示的核心概念, 大大降低了模型的复杂度

因子图就是这样了, 继续下一章吧!pd的Machine Learning

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PD我是你的真爱粉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值