注:( 深度优先与广度优先的结果不唯一,本文只提供一种解答)
#include <iostream>
#include <iomanip>
using namespace std;
//队列------------------------------------
typedef int QElemType;
const int QUEUE_INIT_SIZE = 100;
const int QUEUEINCREMENT = 10;
typedef struct {
QElemType* data;
int front;
int rear;
int queuesize;
int incresize;
}SqQueue;
bool InitQueue(SqQueue& Q, int = QUEUE_INIT_SIZE, int = QUEUEINCREMENT);//初始化循环队列
int QueueLength(SqQueue Q);//返回队列长度
bool DeQueue(SqQueue& Q, QElemType& e);//将队首元素出队,用e返回
bool EnQueue(SqQueue& Q, QElemType e);//将元素e放入循环队列
bool GetHead(SqQueue Q, QElemType& e);//取队首元素,用e返回
bool incrementQueuesize(SqQueue& Q);//当循环队列空间不足时,动态扩充空间
bool QueueEmpty(SqQueue Q);//判断队列是否为空
bool InitQueue(SqQueue& Q, int maxsize, int incresize) {
Q.data = new QElemType[maxsize];
if (!Q.data)return 0;
Q.front = Q.rear = 0;
Q.queuesize = maxsize;
Q.incresize = incresize;
return 1;
}
int QueueLength(SqQueue Q) {
return (Q.rear - Q.front + Q.queuesize) % Q.queuesize;
}
bool DeQueue(SqQueue& Q, QElemType& e) {
if (Q.front == Q.rear)
return 0;
e = Q.data[Q.front];
Q.front = (Q.front + 1) % Q.queuesize;
return 1;
}
bool EnQueue(SqQueue& Q, QElemType e) {
if ((Q.rear + 1) % Q.queuesize == Q.front)
if (!incrementQueuesize(Q))
return 0;
Q.data[Q.rear] = e;
Q.rear = (Q.rear + 1) % Q.queuesize;
return 1;
}
bool GetHead(SqQueue Q, QElemType& e) {
if (Q.rear == Q.front)
return 0;
e = Q.data[Q.front];
return 1;
}
bool incrementQueuesize(SqQueue& Q) {
QElemType* newdata = new QElemType[Q.queuesize + Q.incresize];
if (!newdata)return 0;
for (int i = 0; i < Q.queuesize; i++)
newdata[i] = Q.data[(Q.front + i) % Q.queuesize];
delete[] Q.data;
Q.data = newdata;
Q.front = 0; Q.rear = Q.queuesize - 1;
Q.queuesize += Q.incresize;
return 1;
}
bool QueueEmpty(SqQueue Q) {
if (Q.front == Q.rear)
return 1;
return 0;
}
//栈--------------------------------------
typedef int SElemType;
typedef struct StackNode {
SElemType data;
struct StackNode* next;
}StackNode, * LinkStack;
bool InitStack(LinkStack& S);//初始化链栈
bool Push(LinkStack& S, SElemType e);//将元素e压入栈中
bool Pop(LinkStack& S, SElemType& e);//将首元素出栈,用元素e返回
bool StackEmpty(LinkStack S);//判断链栈是否为空
bool GetTop(LinkStack S, SElemType& e);//取链栈栈顶元素,用元素e返回
bool InitStack(LinkStack& S) {
S = NULL;
return 1;
}
bool Push(LinkStack& S, SElemType e) {
StackNode* temp = new StackNode;
if (!temp)return 0;
temp->data = e;
temp->next = S;
S = temp;
return 1;
}
bool Pop(LinkStack& S, SElemType& e) {
if (S == NULL)return 0;
StackNode* temp = S;
e = S->data;
S = S->next;
delete temp;
return 1;
}
bool StackEmpty(LinkStack S) {
if (S == NULL)
return 1;
return 0;
}
bool GetTop(LinkStack S,SElemType& e){
if (S == NULL)return 0;
e = S->data;
return 1;
}
//图-----------------------------------
const int MAX = 32767; //最大值∞设为MAX
const int MAX_VERTEX_NUM = 20; //最大顶点个数
typedef char VexType; //顶点类型
typedef int VRType; //边的类型,无权图,用1或0表示是否相邻;带权图则为权值类型
typedef struct {
VexType vexs[MAX_VERTEX_NUM]; //描述顶点的数组
VRType arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; //邻接矩阵
int vexnum, arcnum; //图的当前顶点数和弧(边)数
}MGraph;
bool visited[MAX_VERTEX_NUM];//记录结点是否被访问过
bool CreateDG(MGraph& G);//建立有向图
int LocateVex(MGraph G, char v);//将顶点信息转为位次,便于程序计算
void PrintMGraph(MGraph G);
void DFSTraverse(MGraph G);//深度优先遍历
void DFS(MGraph G, int i);//从结点i开始进行深度优先遍历
void BFSTraverse(MGraph G);//广度优先遍历
bool CreateDG(MGraph& G) {
char v1, v2;
cout << "请依次输入有向图G的顶点数、弧数:" << endl;
cin >> G.vexnum >> G.arcnum;
cout << "请输入各顶点信息:" << endl;
for (int i = 0; i < G.vexnum; i++)
cin >> G.vexs[i];
for (int i = 0; i < G.vexnum; i++)//将各个顶点之间边的值初始化为0
for (int j = 0; j < G.vexnum; j++)
G.arcs[i][j] = 0;
cout << "输入有向弧:" << endl;
for (int k = 0; k < G.arcnum; k++) {
cin >> v1 >> v2;//输入两个点的信息
int i = LocateVex(G, v1);//通过LocateVex函数将顶点转为位次,以供程序计算
int j = LocateVex(G, v2);
if (i == -1 || j == -1)//若顶点不存在则建立结束
return 0;
G.arcs[i][j] = 1;//将两点所连的边值变为1
}
return 1;
}
int LocateVex(MGraph G, char v) {
for (int i = 0; i < G.vexnum; i++)//遍历所有顶点,当与v相等时返回位次值
if (G.vexs[i] == v)
return i;
return -1;
}
void PrintMGraph(MGraph G) {
for (int i = 0; i < G.vexnum; i++) {
for (int j = 0; j < G.vexnum; j++) {
cout << setw(3) << G.arcs[i][j];
}
cout << endl;
}
}
void DFSTraverse(MGraph G) {
int i;
for (i = 0; i < G.vexnum; i++)//将所有结点初始化为false,即未访问
visited[i] = false;
for (i = 0; i < G.vexnum; i++)
{
if (!visited[i])//从一未被访问的结点开始进行深度优先遍历
DFS(G, i);
}
}
void DFS(MGraph G, int i) {
LinkStack S; int temp;//用于接收临时数据
InitStack(S); Push(S, i); //布置初始任务
visited[i] = true;
while (!StackEmpty(S)) { //每次处理一项任务
Pop(S, temp);
cout << setw(3) << G.vexs[temp];
for (int j = 0; j <G.vexnum; j++)
if (G.arcs[temp][j] && visited[j] == false)
{
visited[j] = true;
Push(S, j);
}
}//while
}
void BFSTraverse(MGraph G) {
SqQueue Q; InitQueue(Q, G.vexnum); //建立循环队列Q
int temp;//用于接收临时数据
for (int i = 0; i < G.vexnum; i++) //将所有结点初始化为false,即未访问
visited[i] = false;
for (int i = 0; i < G.vexnum; i++)//从第一个结点开始依位次执行
if (!visited[i]) {//若已被访问过,则不执行
visited[i] = true;
cout << setw(3) << G.vexs[i];//访问第i个顶点
EnQueue(Q, i); //i入队列
while (!QueueEmpty(Q)) {
DeQueue(Q, temp); //队头元素出队并用temp来接收
for (int j = 0; j < G.vexnum; j++)
if (G.arcs[temp][j] && !visited[j]) {
visited[j] = true;
cout << setw(3) << G.vexs[j];//访问顶点w
EnQueue(Q, j); //当前访问的顶点w入队列Q
}//if
}//while
}//if
}
int main()
{
MGraph G;
cout << "*****构造有向图(邻接矩阵)*****" << endl;
CreateDG(G);
cout << "*******该图的邻接矩阵为:*******" << endl;
PrintMGraph(G);
cout << "*******深度优先搜索*******" << endl;
DFSTraverse(G);
cout << endl;
cout << "*******广度优先搜索*******" << endl;
BFSTraverse(G);
cout << endl;
return 0;
}
实验样例