一、课堂作业
损失计算:
根据公式计算得到loss=1
二、课堂代码
Tensor:pytorch最基本的数据类型(实际是类),可以是标量、向量、矩阵、高维tensor。
tensor包含两个成员:data和 grad
data:保存权重的值
grad:保存损失函数对权重的导数
import numpy as np
import matplotlib.pyplot as plt
import torch
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.Tensor([1.0])
w.requires_grad = True #表示需要计算梯度
def forward(x):
return x * w #w是tensor,x格式自动转为tensor与w进行点乘,并计算梯度
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2
print('predict (before training)', 4, forward(4).item())
for epoch in range(100):
for x, y in zip(x_data, y_data):
l = loss(x, y)
l.backward() #计算所有需要计算的梯度(上面创建的w)
print('\tgrad:', x, y, w.grad.item()) #item用来直接拿出梯度的数值变成标量
w.data = w.data - 0.01 * w.grad.data #grad也是一个tensor,直接加进去会建立计算图,需要取其data
w.grad.data.zero_() #梯度数据清零
print('progress:', epoch, l.item())
print('predic (after training)', 4, forward(4).item())
结果:
三、课后作业
import numpy as np
import matplotlib.pyplot as plt
import torch
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w1 = torch.Tensor([1.0])
w1.requires_grad = True
w2 = torch.Tensor([1.0])
w2.requires_grad = True
b = torch.Tensor([1.0])
b.requires_grad = True
def forward(x):
return x * x * w1 + x * w2 + b
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2
print('predict (before training)', 4, forward(4).item())
for epoch in range(100):
for x, y in zip(x_data, y_data):
l = loss(x, y)
l.backward()
print('\tgrad:', x, y, w1.grad.item(), w2.grad.item(), b.grad.item())
w1.data = w1.data - 0.01 * w1.grad.data
w2.data = w2.data - 0.01 * w2.grad.data
b.data = b.data - 0.01 * b.grad.data
w1.grad.data.zero_()
w2.grad.data.zero_()
b.grad.data.zero_()
print('progress:', epoch, l.item())
print('predic (after training)', 4, forward(4).item())
结果: