pytorch深度学习实践(刘二大人)课堂代码&作业——反向传播

一、课堂作业

损失计算:

\frac{\partial loss}{\partial w}=2r\cdot \frac{\partial r}{\partial w}=2(\widehat{y}-y)\cdot \frac{\partial (\widehat{y}-y)}{\partial w}=2(wx-y)\cdot x=2(2\cdot 1-4)\cdot 2=-8

根据公式计算得到loss=1

\frac{\partial loss}{\partial w}=2(\widehat{y}-y)\cdot \frac{\partial (\widehat{y}-y)}{\partial w}=2(wx+b-y)\cdot x=2(1\cdot 1+2-2)\cdot 1=2

\frac{\partial loss}{\partial b}=2(\widehat{y}-y)\cdot \frac{\partial (\widehat{y}-y)}{\partial b}=2(wx+b-y)\cdot 1=2(1\cdot 1+2-2)\cdot 1=2

二、课堂代码

Tensor:pytorch最基本的数据类型(实际是类),可以是标量、向量、矩阵、高维tensor。

tensor包含两个成员:data和 grad

data:保存权重的值

grad:保存损失函数对权重的导数

import numpy as np
import matplotlib.pyplot as plt
import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = torch.Tensor([1.0])
w.requires_grad = True   #表示需要计算梯度

def forward(x):
    return x * w  #w是tensor,x格式自动转为tensor与w进行点乘,并计算梯度

def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

print('predict (before training)', 4, forward(4).item())

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        l.backward()  #计算所有需要计算的梯度(上面创建的w)
        print('\tgrad:', x, y, w.grad.item()) #item用来直接拿出梯度的数值变成标量
        w.data = w.data - 0.01 * w.grad.data  #grad也是一个tensor,直接加进去会建立计算图,需要取其data

        w.grad.data.zero_() #梯度数据清零

    print('progress:', epoch, l.item())

print('predic (after training)', 4, forward(4).item())

结果:

三、课后作业

\frac{\partial loss}{\partial w_{1}}=\frac{\partial ((\widehat{y}-y)^{2})}{\partial w_{1}}=2(\widehat{y}-y)\cdot \frac{\partial (\widehat{y}-y)}{\partial w_{1}}= 2(w_{1}x^{2}+w_{2}x+b)\cdot x^{2}

\frac{\partial loss}{\partial w_{2}}=\frac{\partial ((\widehat{y}-y)^{2})}{\partial w_{2}}=2(\widehat{y}-y)\cdot \frac{\partial (\widehat{y}-y)}{\partial w_{2}}= 2(w_{1}x^{2}+w_{2}x+b)\cdot x

\frac{\partial loss}{\partial b}=\frac{\partial ((\widehat{y}-y)^{2})}{\partial b}=2(\widehat{y}-y)\cdot \frac{\partial (\widehat{y}-y)}{\partial b}= 2(w_{1}x^{2}+w_{2}x+b)\cdot 1

import numpy as np
import matplotlib.pyplot as plt
import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w1 = torch.Tensor([1.0])
w1.requires_grad = True   

w2 = torch.Tensor([1.0])
w2.requires_grad = True 

b = torch.Tensor([1.0])
b.requires_grad = True 

def forward(x):
    return x * x * w1 + x * w2 + b 

def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

print('predict (before training)', 4, forward(4).item())

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        l.backward()  
        print('\tgrad:', x, y, w1.grad.item(), w2.grad.item(), b.grad.item()) 
        w1.data = w1.data - 0.01 * w1.grad.data  
        w2.data = w2.data - 0.01 * w2.grad.data
        b.data = b.data - 0.01 * b.grad.data

        w1.grad.data.zero_() 
        w2.grad.data.zero_()
        b.grad.data.zero_()

    print('progress:', epoch, l.item())

print('predic (after training)', 4, forward(4).item())

结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值