MIT-计算机科学中的数学 Lec1-3

课程链接:https://www.bilibili.com/video/BV1zh41167Uy?from=search&seid=3400639910032477988&spm_id_from=333.337.0.0

Lec-1

Def: A mathematical proof is a verification of a proposition by a chain of logical deductions from a set of axioms

Def: A proposition(命题) is a statement that is either true or false
Ex: 2+3=5

Def: A predicate(谓词) is a proposition whose truth depends on a value of a variable
Ex: the Goldbach’s conjecture(哥德巴赫猜想)
the Riemann hypothesis(黎曼假设)
the Poincare conjecture(庞克类猜想)

Def: implication(隐含): An implication p→q is true if p is false or q is true(当p为假或q是为真,p→q为真)
if and only if (当且仅当)↔ :p→q & q→p
Truth Table(真值表):

pqp→qq→pp↔q
TTTTT
TFFTF
FTTFF
FFTTT

p if and only q is true when they’re both true or both false

​ Examples of something that’s NOT A PROPOSITION:

  • this statement is false
  • a question

Def: axiom(公理): An axiom is a proposition that is assumed to be true
Ex: if a=b and b=c, a=c

​ two guiding principles to axioms:

1. consistent(一致)
2. complete(完整)

Def: a set of axioms is consistent if no proposition can be proved to be both true and false
a set of axioms is complete if it can be used to prove every proposition is either true or false

Lec-2

indirect proof(间接证明):

Proof by Contradiction(反证法):

To proof P is true, we assume P is false (┐P is T),then use that hypothesis to derive a falsehood or contradiction
if ┐P →F is true,P is true.

Ex: Thm: 2 \sqrt{2} 2 is irrational

Pf:(by cont)
Assume for purpose of contradiction that 2 \sqrt{2} 2 is rational
2 \sqrt{2} 2 = a/b (a fraction in lowest terms: a and b have no common divisors)
→ 2= a 2 a^{2} a2/ b 2 b^{2} b2
→ 2* b 2 b^{2} b2= a 2 a^{2} a2
→ a is even(2|a) a是偶数
→ 4| a 2 a^{2} a2
→ 4|2* b 2 b^{2} b2
→ 2| b 2 b^{2} b2
→ b is even
→a/b is not a fraction in lowest terms(contradiction)
2 \sqrt{2} 2 is rational

markdown数学公式

为了在Windows安装ADB工具,你可以按照以下步骤进行操作: 1. 首先,下载ADB工具包并解压缩到你自定义的安装目录。你可以选择将其解压缩到任何你喜欢的位置。 2. 打开运行窗口,可以通过按下Win+R键来快速打开。在运行窗口中输入"sysdm.cpl"并按下回车键。 3. 在系统属性窗口中,选择"高级"选项卡,然后点击"环境变量"按钮。 4. 在环境变量窗口中,选择"系统变量"部分,并找到名为"Path"的变量。点击"编辑"按钮。 5. 在编辑环境变量窗口中,点击"新建"按钮,并将ADB工具的安装路径添加到新建的路径中。确保路径正确无误后,点击"确定"按钮。 6. 返回到桌面,打开命令提示符窗口。你可以通过按下Win+R键,然后输入"cmd"并按下回车键来快速打开命令提示符窗口。 7. 在命令提示符窗口中,输入"adb version"命令来验证ADB工具是否成功安装。如果显示版本信息,则表示安装成功。 这样,你就成功在Windows安装ADB工具。你可以使用ADB工具来执行各种操作,如枚举设备、进入/退出ADB终端、文件传输、运行命令、查看系统日志等。具体的操作方法可以参考ADB工具的官方文档或其他相关教程。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [windows环境安装adb驱动](https://blog.youkuaiyun.com/zx54633089/article/details/128533343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Windows安装使用ADB简单易懂教程](https://blog.youkuaiyun.com/m0_37777700/article/details/129836351)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Asio otus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值